3

NETWORK

NEURO
SCIENCE

an open access G journal

Check for
updates

Citation: Karvelis, P., Charlton, C. E.,
Allohverdi, S. G., Bedford, P., Hauke,
D. J., & Diaconescu, A. O. (2022).
Computational approaches to
treatment response prediction in major
depression using brain activity and
behavioral data: A systematic review.
Network Neuroscience, 6(4),
1066-1103. https://doi.org/10.1162
/netn_a_00233

DOI:
https://doi.org/10.1162/netn_a_00233

Received: 14 October 2021
Accepted: 14 January 2022

Competing Interests: The authors have
declared that no competing interests
exist.

Corresponding Author:
Povilas Karvelis
povilas.karvelis@camh.ca

Handling Editor:
Olaf Sporns

Copyright: © 2022

Massachusetts Institute of Technology
Published under a Creative Commons
Attribution 4.0 International

(CC BY 4.0) license

|||| | The MIT Press

FOCUS FEATURE:
Connectivity, Cognition, and Consciousness

Computational approaches to treatment response
prediction in major depression using brain activity
and behavioral data: A systematic review

Povilas Karvelis'*(/, Colleen E. Charlton'*, Shona G. Allohverdi’, Peter Bedford’,
Daniel J. Hauke'**(®), and Andreea O. Diaconescu’*>*®

"Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
2Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
3Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland
“University of Toronto, Department of Psychiatry, Toronto, ON, Canada
®Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada

®Department of Psychology, University of Toronto, Toronto, ON, Canada
*These authors contributed equally to this work.

Keywords: Major depressive disorder, Treatment response prediction, Machine learning,
Computational psychiatry, fMRI, EEG

ABSTRACT

Major depressive disorder is a heterogeneous diagnostic category with multiple available
treatments. With the goal of optimizing treatment selection, researchers are developing
computational models that attempt to predict treatment response based on various
pretreatment measures. In this paper, we review studies that use brain activity data to predict
treatment response. Our aim is to highlight and clarify important methodological differences
between various studies that relate to the incorporation of domain knowledge, specifically
within two approaches delineated as data-driven and theory-driven. We argue that theory-
driven generative modeling, which explicitly models information processing in the brain
and thus can capture disease mechanisms, is a promising emerging approach that is only
beginning to be utilized in treatment response prediction. The predictors extracted via such
models could improve interpretability, which is critical for clinical decision-making. We
also identify several methodological limitations across the reviewed studies and provide
suggestions for addressing them. Namely, we consider problems with dichotomizing treatment
outcomes, the importance of investigating more than one treatment in a given study for
differential treatment response predictions, the need for a patient-centered approach for
defining treatment outcomes, and finally, the use of internal and external validation methods
for improving model generalizability.

AUTHOR SUMMARY

Individuals with major depressive disorder (MDD) vary in their response to available
treatments, rendering treatment selection a challenging task. In this paper, we review studies
applying computational models for predicting treatment response in MDD based on measures
of brain activity. We discuss methodological differences across studies, focusing on how
they incorporate existing knowledge about MDD and how that affects interpretability

of model predictions. In this context, we argue that theory-driven generative modeling,
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Treatment response prediction in major depression using brain activity

Network Neuroscience

which explicitly models information processing in the brain and thus can capture disease
mechanisms, is a promising emerging approach for treatment response prediction. Finally, we
identify several other important limitations that are holding back the translation of these tools
into clinical practice.

INTRODUCTION

Depressive disorders are the third highest cause of years lived with disability, affecting more
than 264 million people worldwide ( ). Major depressive disorder (MDD) is
the most frequent type of depressive disorder ( ) and is characterized by

depressed mood, diminished interests or pleasure, vegetative symptoms (e.g., appetite or sleep
disturbances), and impaired cognition (e.g., feelings of worthlessness or inappropriate guilt;

). A key challenge in the treatment of MDD is the het-
erogeneity of illness course and treatment response ( ). Patients often
show diverse initial symptoms with divergent disease trajectories over time, and some symp-
toms persist in spite of treatment ( ). As a result, many patients face a long and
painful trial-and-error process to identify the right treatment.

A promising way forward is to leverage computational models for understanding the het-
erogeneity of MDD and identifying individual predictors of differential treatment response.
Broadly defined, computational psychiatry aims to formalize the relationship between the
brain’s neurobiology, its environment, and psychiatric symptoms in computational terms
( ). Within computational psychiatry, there are two conceptually
different approaches: data-driven and theory-driven modeling ( ;

). Data-driven approaches are domain-knowledge-agnostic, and classical
statistics or machine learning techniques are used for exploratory analyses to discover predic-
tive patterns in high-dimensional data. Conversely, theory-driven approaches use models that
rely on domain-knowledge-derived hypotheses about the processes underlying neural and/or
behavioral data. While advances in each approach have helped progress clinical research,
each method comes with different trade-offs. Moreover, these approaches are not mutually
exclusive and are often integrated in different ways. With this in mind, we review electroen-
cephalography (EEG) and functional magnetic resonance imaging (fMRI) studies on MDD
treatment response prediction and organize methodological differences among studies along
the data-driven versus theory-driven dimensions. We limit our review to studies that predict
treatment response using out-of-sample testing, while studies that report simple (in-sample)
associations between the variables and treatment response outcomes will not be discussed.

In what follows, we first provide a brief introduction into data-driven and theory-driven
approaches. We propose that the data-driven versus theory-driven trade-off could be seen
along two dimensions related to the way data are collected and the way data are processed.
This provides background for the following section, where we briefly summarize fMRI and
EEG studies using data- or theory-driven methods for treatment response prediction in
MDD, going from the least theory-driven to the most theory-driven approaches. Next, we pres-
ent several promising theory-driven developments that are only beginning to be utilized for
treatment response prediction in MDD. Finally, we discuss more generally what challenges
are remaining for these tools to be translated into clinical practice.
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Treatment response prediction in major depression using brain activity

DIFFERENT TYPES OF APPROACHES
Data-Driven Approaches

Data-driven approaches aim to identify patterns or predictive relationships in high-
dimensional datasets without relying directly on domain knowledge (Figure 1)—such as pre-
dicting treatment response based on neuroimaging data without requiring specific hypotheses
about the neural mechanisms underlying MDD. To obtain discriminative features from the raw
data, such approaches typically use either feature extraction or feature selection methods. Fea-
ture extraction involves constructing a smaller set of new features from the existing ones by
applying techniques such as independent component analysis (ICA) or principal component
analysis (PCA). Feature selection, on the other hand, does not transform the original features,
but simply removes those that are irrelevant, such as highly intercorrelated features or features

. . that do not correlate with the target variable (e.g., treatment response).
Supervised learning:

A set of techniques for inferring a The resulting features are then used to train machine learning algorithms to predict treat-
function that maps input features ment response. In this review, we consider two main types of machine learning algorithms:
(e.g., neuroimaging features) to . . . . . .

supervised and unsupervised. In supervised learning, an algorithm learns a function that maps
output labels (e.g., treatment ) ) .
response) based on training examples input features (e.g., neuroimaging measures) to output labels (e.g., treatment outcome). Super-
of feature-label pairs. vised algorithms are used for classification, the prediction of a discrete label (e.g., remission vs.

Data collection

Generative models

Behaviour Brain
(RL, BDT) (DCM)

Dimensionality Non-generative models

; Feature | Feature | - -
reduction Rt taCtion selection Behaviour Brain
(PCA, ICA) | (ccA) (linear models) (GLM)

Methods for
hypothesis
. Unsupervised Supervised
testing / (k-means, LCCA) (SVM, LR)
predictions
MDD population Predictions for Group-level
Outcomes stratification individual patients differences

Figure 1. A conceptual overview illustrating common methods employed by data-driven and theory-driven approaches to study treatment
response prediction in MDD. At the data collection stage, theory-driven knowledge can be incorporated via task-based designs, which probe
specific cognitive functions. Most often, resting-state data will be processed with data-driven methods by performing feature selection, for
example, using canonical correlation analysis (CCA), or feature extraction, for example, using principal or independent component analysis
(PCA or ICA). Theory-driven dimensionality reduction is most often applied to task-based data using non-generative models, such as linear
models used for obtaining summary statistics from behavioral data or the commonly used general linear model (GLM) in neuroimaging data
analysis. A more advanced approach is to use generative models of behavior, such as reinforcement learning (RL) or Bayesian decision theory
(BDT) models, which can be fit to behavioral data, or dynamic causal modeling (DCM), which can be applied to neuroimaging data. Next, the
obtained features are used to train machine learning algorithms. Using supervised learning, such as support vector machines (SVM) or logistic
regression (LR), one can determine the predictive ability of these features at the level of an individual patient. Unsupervised learning, such as
k-means or latent class cluster analysis (LCCA), on the other hand, is primarily focused on stratifying MDD patient population, but the deter-
mined subpopulations could subsequently inform treatment response prediction. In contrast to machine learning approaches, classical statis-
tics methods that are concerned with uncovering group-level effects (e.g., group differences between responders and nonresponders) and that
do not provide predictions at the level of an individual patient are thus not included in this review.

Network Neuroscience 1068
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Unsupervised learning:

A set of techniques for finding
patterns in the distribution of features
(e.g., neuroimaging measures)
without using labels (e.g., treatment
response).

Network Neuroscience

nonremission), or regression, the prediction of a continuous variable (e.g., symptom improve-
ment after treatment). Popular supervised classifiers include support vector machines (SVM;
), logistic regression ( ), and decision trees (e.g.,

). Comparatively, unsupervised learning does not require output labels, but instead finds
patterns in the distribution of the input features. Clustering, the process of grouping data
together based on underlying similarities, may be used to identify MDD subtypes or treatment
response profiles, although ascertaining the clinical usefulness of the discovered clusters may
require additional analyses with the data labels. As we will see in section

, most of the neuroimaging studies on treatment
response prediction in MDD to date have employed supervised learning methods.

Theory-Driven Approaches

Theory-driven approaches employ domain-knowledge-informed techniques that utilize
hypotheses about the underlying mechanisms of MDD ( ). The models used in this
approach can broadly be divided into generative and non-generative models. Non-generative
models would subsume linear models used for obtaining summary statistics from behavioral
data or the commonly used general linear model (GLM) in neuroimaging data analysis.
Generally, such methods are used for exploratory analyses or to test hypotheses in terms of
a specific contrast-, condition-, or group-related effect. In contrast, generative models aim
to explicitly describe a mechanism that underlies neural or behavioral data in computational
terms and thus are able to generate such data. These methods can span multiple levels of anal-
yses, from biophysically informed models that describe the dynamics at a single neuron (e.g.,
ion channel conductances, membrane potential, firing rate), to generative models of brain
responses that investigate experimentally induced coupling among brain areas, to generative
models of behavior that describe information processing underlying decision-making. This
type of approach allows for inference on disease mechanisms and provides a detailed model
of the disease ( ; ). Another notable advantage of gener-
ative models is that they can be used to investigate the behavior of the system under different
conditions through simulations. In this manner, simulations can be employed to generate new
hypotheses about disease mechanisms and achieve a better understanding of the neurobiology
of treatment effects ( ).

Through various (mostly non-generative) theory-driven approaches, MDD has been associ-
ated with deficits in reward processing and emotion regulation ( ;
), implicating serotonergic and dopaminergic neurocircuits, respectively
( ; ; ). Some of the main find-
ings involve elevated amygdala activation in response to negative emotional stimuli, increased
activity of the anterior cingulate/ventromedial prefrontal cortex (ACC/vmPFC), which are
involved in automatic emotion regulation, and attenuated activity of the dorsolateral PFC
(dIPFC), which is involved in voluntary emotion regulation ( ;

). With regards to reward processing, decreased activity of the ventral striatum has
emerged as the most prominent finding ( ). Large-scale network studies have
also revealed increased connectivity within the affective network, reduced connectivity within
the frontal-striatal reward network, diminished connectivity within the central executive net-
work, and hyperconnectivity of the default mode network (DMN;

; ). Importantly, changes in each of these networks
have been related to different symptoms (e.g., anhedonia being more associated with the
reward network, and rumination with the DMN) and thus might differentially respond to treat-
ments ( ; ). Despite the increasing understanding of
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Interpretability:

The degree to which a user can
comprehend why certain predictions
have been made by a predictive
model.

Task-based neuroimaging:
Measures brain activity that is
functionally involved in a specific
cognitive or behavioral task.

Resting-state neuroimaging:
Measures brain activity and regional
interactions that occur in the absence
of a stimulus or a task (“at rest”).

Generative embedding:

The use of features extracted via a
generative model as input for
supervised or unsupervised machine
learning algorithms.

Network Neuroscience

the neural mechanisms underlying MDD, recent review articles on regional activation and
functional connectivity measures suggest, however, a lack of reliable neuromarkers for treat-
ment response prediction ( ;

), which highlights the need for methodological advancements.

Combining Data-Driven and Theory-Driven Approaches

Data-driven and theory-driven approaches can be combined in different ways. This can be
done along two dimensions: data collection and dimensionality reduction ( ). In the
former case, theory-driven knowledge is incorporated into the decision about what type of
data is collected, for example, by probing cognitive mechanisms known to be implicated in
MDD with cognitive tasks. In the latter case, theory-driven knowledge is incorporated by
selecting a subset of data features (e.g., brain regions) or deriving the features based on pre-
vious literature or a priori hypotheses.

One of the main benefits of incorporating more theory-driven elements into treatment
response prediction is the interpretability of the discriminative features ( ;

). Increased interpretability can help both clinicians and researchers better under-
stand how model predictions and the associated neural markers relate to the behavioral and
cognitive symptoms experienced by patients. For clinicians, interpretability is essential for
making informed judgements based on a model’s prediction (

; ). For researchers, interpretability can help
them understand why certain treatments do not work for some individuals—which can pro-
vide insights for the development of new treatments ( ).

At the stage of data collection, interpretability can be improved by using task-based neu-
roimaging paradigms. Compared with resting-state neuroimaging protocols (which are more
common in data-driven approaches), task-based paradigms are usually more sensitive to
brain-behavior and brain-mind relationships ( ). While resting-state data collection
could also be motivated by specific hypotheses about rumination and mind wandering in
MDD, and thus have a theory-driven motivation, without sufficient experimental control
(e.g., experience sampling or retrospection) to relate the recorded brain activity to experience,
treatment response predictions derived from such data can be difficult to interpret.

Interpretability can be further improved at the dimensionality reduction stage by applying
theory-driven techniques, which incorporate knowledge or hypotheses about mechanisms
underlying MDD. This is in contrast to data-driven dimensionality reduction, which does
not require such knowledge and, as a result, offers less interpretable features. State-of-the-
art theory-driven dimensionality reduction involves the use of generative models that describe
information processing dynamics in the brain and by doing so is able to capture disease mech-
anisms in greater detail ( ). Applying machine learning classification or clustering
methods using features derived from fitting such generative models to data has been referred
to as generative embedding ( ; ). However, this tech-
nique is only beginning to be utilized for treatment response prediction in MDD and is yet to
prove its potential (see the section ).

STUDIES EXAMINING TREATMENT RESPONSE PREDICTION IN MDD

In this section, we briefly summarize recent studies on treatment response prediction in MDD,
going from the least to the most theory-driven approaches ( and 2). Our aim is to high-
light the variety of methodologies used and to draw attention to the important distinctions of
data- versus theory-driven strategies ( ). We restrict our review to studies that performed

1070

%20z AInF 92 uo 3senb Aq 4pd-g£Z00 B UIBU/99Z9502/9901/7/9/4pd-8l01ie/ujeu/npa W j08.Ip//:dny Woly papeojumoq



80UBIS0INSN YIOMIBN

(WA

Table 1.  Overview of data-driven MDD treatment response prediction studies. Relevant model performance metrics (BAC and R?) that were not reported by the studies but were possible
to calculate from the reported values are included in parentheses. MDD - major depressive disorder, TRD - treatment-resistant depression, NDRI - norepinephrine-dopamine reuptake
inhibitor, SSRI - selective serotonin reuptake inhibitor, SNRI - serotonin-norepinephrine reuptake inhibitor, rTMS - repetitive transcranial magnetic stimulation, tDCS - transcranial direct-
current stimulation, ECT - electroconvulsive therapy, MADRS - Montgomery-Asberg Depression Rating Scale, HAMD - Hamilton Rating Scale for Depression, BDI - Beck Depression
Inventory, QIDS-SR - Quick Inventory of Depressive Symptomatology—Self Report, ROI - region of interest, FC - functional connectivity, ICA - independent component analysis, SVM -
support vector machine, LDA - linear discriminant analysis, CV - cross-validation, LOOCYV - leave- one-out cross-validation, LOSOCYV - leave-one-site-out cross-validation, Acc - accuracy,
SE - sensitivity, SP - specificity, BAC - balanced accuracy, RMSE - root mean square error, dmPCF - dorsomedial prefrontal cortex, ACC - anterior cingulate cortex.

Outcome
Reference Subjects Treatment Modality defintion Features Model Validation Performance
Jaworska et al. 51 MDD NDRI rsEEG Response: Demographics, Random forest 10-fold CV Acc 88%
(2019) (bupropion), SSRI >50% | baseline, &
(escitalopram), in MADRS Week 1 clinical SE 77%
or combination data, EEG power
of both features, current SP99%
source density
Zhdanov 122 MDD SSRI rsEEG Response: Electrode-level & SVM Leave-one- BAC 79%
et al. (2020) (escitalopram) >50% | in source-level site-out
MADRS spectral features, Ccv SE 67%
multiscale (LOSOCV)
entropy-based & SP91%
microstate-based
features
Khodayari- 22 MDD SSRI (mainly rsEEG Response: Spectral coherence, Kernel partial Nested CV Acc 87%
Rostamabad sertraline) >25% | in mutual information least squares
et al. (2010) HAMD-17 between electrode regression SE 88%
pairs, absolute &
relative power SP 86%
spectral density
Khodayari- 22 TRD SSRI (sertraline, rsEEG Response: Power spectral Mixture of factor k-fold CV Acc 88%
Rostamabad citalopram, >30% | in density, squared analysis
et al. (2013) fluvoxamine, HAMD-17 spectral SE 95%
or paroxetine) coherence, mutual
information, SP 81%
left-to-right
hemispheres, &
anterior/posterior
power ratio
Rabinoff et al. 25 MDD SSRI (fluoxetine) rsEEG Response: Absolute & relative Classification LOOCV BAC 93%
(2011) or SNRI HAMD-17 power, cordance and regression
(venlafaxine) <10 features trees (CART) SE 85%
SP 100%
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Table 1. (continued)
Outcome
Reference Subjects Treatment Modality defintion Features Model Validation Performance
Shahabi, Shalbaf, 30 MDD SSRI (type not rsEEG Response: 3D images constructed  Convolutional 10-fold CV Acc 97%
and Maghsoudi specified) >50% | in from EEG signal neural
(2021) BDI networks SE 96%
SP 97%
W. Wu et al. 109 MDD SSRI (sertraline) rsEEG A in HAMD-17 Theta, alpha, beta, Linear regression 10-fold CV (R* = 0.36)
(2020) (sertraline), gamma band
119 MDD power of latent r=20.60
(placebo) signal
b 8 RMSE = 5.68
p=288x10"
Rajpurkar et al. 518 MDD SSRI rsEEG A in HAMD-21 Absolute & relative Gradient- 5-fold Concordance
(2020) (escitalopram, (individual power of delta, boosted stratified index of >0.8
sertraline) symptoms) theta, alpha, decision trees cv on 12 out of
or SNRI beta, & gamma (GBDT) 21 symptoms
(venlafaxine) frequency bands
in frontal & R?*0.3-0.7
occipital regions
Khodayari- 27 TRD rTMS rsEEG Response: Anterior/posterior Mixture of factor k-fold CV Acc 80%
Rostamabad, >50% | in power ratios analysis
Reilly, Hasey, HAMD-17 at various (BAC 81%)
de Bruin, and frequencies .
MacCrimmon SE 78%
(2011) Sp 83%
N. Bailey et al. 50 TRD rTMS rsEEG Response: Mood features, theta SVM 5-fold CV BAC 86%
(2019) >50% | in & alpha power
HAMD-17 & connectivity, SE 84%
frontal theta o
cordance & alpha SP 89%
peak frequency
Hasanzadeh 46 MDD rTMS rsEEG Response: Nonlinear, power k-nearest LOOCV BAC 91%
et al. (2019) >50% | in spectral density, neighbors
HAMD-17 bispectrum, SE 87%
or BDI-II frontal & .
prefrontal SP 96%
cordance
Al-Kaysi et al. 10 MDD tDCS rsEEG Response: Power spectral SVM, LDA, LOOCV Mood Labels
(2017) >50% | in density in delta, extreme Channels
MADRS theta, alpha, learning FC4-AF8:
beta, & gamma machine Acc 76%;
frequency bands Cognition
Labels Channels
CPz-CP2:
Acc 92%
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Tian et al.
(2020)

Klobl et al.
(2020)

Chin Fatt
et al. (2020)

Korgaonkar
et al. (2020)

106 MDD SSRI rsfMRI
(escitalopram)

29 MDD SSRI rsfMRI
(escitalopram)

132 MDD SSRI (sertraline) rsfMRI
(sertraline),
132 MDD
(placebo)
163 MDD SSRI rsfMRI
(escitalopram,
sertraline)
or SNRI

(venlafaxine)

Response:
>50% | in
HAMD-17

A in HAMD-17;
Response:
>50% | in
HAMD-17;
Remission:
HAMD-17
<7

A in HAMD-17

Remission:
HAMD-17
<7

Multilayer modularity
framework applied
to the whole brain
to obtain measures
of functional
integration &
segregation among
95 ROIs

Whole-brain FC

Cortical & subcortical
seed-based FC

Whole-brain network
intrinsic FC

SVM

Linear
regression

Linear mixed
model

Logistic
regression

Leave-one-
site-out CV
(LOSOCV)

k-fold CV

LOOCV

Hold-out
test set

BAC 71%

HAMD-sum:
r=0.51

Response:
BAC 60%,
AUC 68%

Remission:
BAC 68%,
AUC 73%

(R = 0.05-0.13)

r=0.22-0.36

Average
connectivity
measures:

Acc 69%

(BAC 67%)

SE 58%

SP 76%

Individual
network
connectivity:

Acc 69%
(BAC 68%)
SE 63%

SP 72%
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Table 1.  (continued)
Outcome
Reference Subjects Treatment Modality defintion Features Model Validation Performance
Nemati et al. 99 MDD SSRI (sertraline), rsfMRI A in HAMD-17 Network restricted Network 10-fold CV Sertraline
(2020) (sertraline), ketamine connectivity restricted (vs. placebo):
103 MDD strength r=0.27
(placebo), & predictive (R> = 0.07),
19 MDD (linear) model p = 0.003;
(ketamine), Ketamine
19 MDD (vs. active
(active placebo):
control), r=0.57
18 MDD (R* =0.32),
(inactive p = 0.0002
control)
Fan et al. 97 MDD SSRI (sertraline) rsfMRI A in HAMD-17 Network restricted Network restricted 10-fold CV Response to
(2020) (sertraline), (%) connectivity strength sertaline
103 MDD predictive or placebo:
(placebo) (linear) model (R* = 0.04)
r=0.19,
p = 0.03
Ju et al. 108 MDD Various drugs; rsEEG A in HAMD-24 ~ Whole-brain FC Connectome- LOOCV r=0.43
(2020) primarily: matrices based predictive (R =0.19),
paroxetine, modeling p=273%x10"°
other SSRIs,
sedative
hypnotics, NDRI
(bupropion)
Kong et al. 82 MDD Antidepressants rsfMRI Response: Dynamic functional Spatiotemporal 10-fold CV Acc 90%
(2021) (type not >50% | in networks graph
specified) HAMD-21 convolutional (BAC 89%)
network
SE 85%
SP 93%
Drysdale et al. 154 MDD rTMS rsfMRI Response: Whole-brain FC SVM LOOCV Only FC feature:
(2017) >50% | in matrices & biotype Acc 78.3%
HAMD-17 diagnosis
FC features
& biotype
diagnosis:
Acc 89.6%
Van Waarde 45 severe/TRD  ECT rsfMRI Remission: Standard group SVM LOOCV Two rs-networks
et al. (2015) MADRS ICA extracted had significant
score < 10 25 rs-networks. accuracy:
Each network dmPFC:
was used to train BAC 85%;
a classifier SE 84%;
SP 85%;
ACC:
BAC 78%;
SE 80%;

SP 75%
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Leaver et al.
(2018)

Sun et al.
(2020)

46 TRD ECT rsfMRI, sMRI,
arterial spin
labeled
fMRI

122 MDD ECT rsfMRI

or bipolar
disorder

Response:
average %
improvement
in HAMD-17,
MADRS, and
QIDS-SR.
Split point
was 42.2%
reduction.

A in HAMD-17;
Remission:
HAMD-17
score < 7

Mean voxelwise
cerebral blood
flow, regional
homogeneity,
fractional amplitude
of low-frequency
fluctuations, gray
matter volume

Negatively &
positively correlated
FC networks based
on whole-brain rsFC

SVM

Linear
regression

Nested CV

LOOCV

BAC 58-68%
SE 54-64%

SP 55-74%

Negative FC
networks:

r=0.51
(R = 0.26)
Acc 76%
(BAC 72%)
SE 51%

SP 92%
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Table 2.  Overview of data- and theory-driven MDD treatment response prediction studies. Relevant model performance metrics (BAC and R?) that were not reported by the studies but
were possible to calculate from the reported values are included in parentheses. MDD - major depressive disorder, TRD - treatment-resistant depression, LLD - late-life depression, SSRI -
selective serotonin reuptake inhibitor, rTMS - repetitive transcranial magnetic stimulation, SNRI - serotonin-norepinephrine reuptake inhibitor, NDRI - norepinephrine-dopamine reuptake
inhibitor, CBT - cognitive behavioral therapy, ECT - electroconvulsive therapy, BDI - Beck Depression Inventory, HAMD - Hamilton Rating Scale for Depression, MADRS - Montgomery-
Asberg Depression Rating Scale, QIDS-SR - Quick Inventory of Depressive Symptomatology—Self Report, SOFAS - Social and Occupational Functioning Assessment Scale, CIDI -
Composite International Diagnostic Interview, LCI - Life Chart Interview, STFT - short-time Fourier transform, EMD - empirical mode decompositions, ACC - anterior cingulate cortex, FC -
functional connectivity, ROI - region of interest, ICA - independent component analysis, BOLD - blood oxygen level dependent, dIPFC - dorsolateral prefrontal cortex, amPFC - anterior
medial prefrontal cortex, mPFC - medial prefrontal cortex, DMN - default mode network, SN - salience network, PCC - posterior cingulate cortex, AN - affective network, VIS - visual, SVM -
support vector machine, ROC - receiver operating characteristic, CV - cross-validation, LOOCV - leave-one-out cross-validation, Acc - accuracy, SE - sensitivity, SP - specificity, BAC -

balanced accuracy, AUC - area under curve, RMSE - root mean square error.

Outcome
Reference Subjects Treatment Modality definition Features Model Validation Performance
Mumtaz et al. 34 MDD SSRIs (type not tbEEG: 3-stimulus Response: Combination of wavelet Logistic 10-fold CV  Acc 92%
(2017) specified) visual oddball >50% | in coefficients, STFT, regression
task BDI-II & EMD features SE 90%
SP 90%
N. Bailey 39 TRD rTMS tbEEG; Working Response: Baseline and Week 1 SVM 5-fold CV BAC 91%
et al. memory task >50% | in MADRS scores, task
(2018) HAMD-17 accuracy & reaction SE 90%
time, alpha, theta, .
gamma power & SP92%
connectivity, theta
gamma coupling
Miller et al. 17 MDD SSRI tbfMRI; emotional A in HAMD-24 Clusters whose active Linear 10-fold CV (R* =0.23)
(2013) (escitalopram) words task during negative word regression r=0.48,
processing was p < 0.05
associated with
treatment outcome
Godlewska 32 MDD SSRI tbfMRI: emotional Response: Mean cluster activity Single-feature LOOCV BAC 72%
et al. (escitalopram) faces task >50% | in within ACC for sad ROC
(2018) HAMD-17 vs. happy faces
Fu et al. 19 MDD SSRI (fluoxetine) tbfMRI; implicit Remission: Whole-brain FC for SVM LOOCV Low intensity
(2008) sad facial affect HAMD-17 each facial expression of sad facial
recognition task <38 intensity (low, expressions:
medium, high)
SE 75%
SP 62%
p value = 0.11
(n.s.)
Fonzo et al. 115 MDD SSRI (sertraline) tbfMRI; A in HAMD-17 incongruent trials— Relevance 10 x 10 (R =0.24)
(2019) (sertraline), Emotional congruent trials vector stratified r=0.49,
122 MDD conflict task brain activation machine CcVv p < 0.001
(placebo) in several ROlIs
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Karim et al.

(2018)

Williams
et al.
(2015)

Goldstein-
Piekarski
et al.
(2016)

Crane et al.

(2017)

SNRI
(venlafaxine)

SSRI
(escitalopram,
sertraline)
or SNRI
(venlafaxine)

SSRI
(escitalopram,
sertraline)
or SNRI
(venlafaxine)

SSRI
(escitalopram)
or SNRI
(duloxetine)

rsfMRI and tbfMRI;

emotional
regulation

& emotional
reactivity task

tbfMRI; Supraliminal

& subliminal facial
emotion task

tbfMRI; emotional

faces task

thfMRI;

Go/No-Go task

Remission:
MADRS < 10

Response:
>50% | in
HAMD-17

Functional
remission:
HAMD-17 <7
and QIDS-SR
<5 and =10
improvement
to achieve >61
on SOFAS

Remission:
HAMD score
<8

Active regions during
emotional reactivity,
emotion regulation, or
centrality at baseline
& after single dose

Emotion vs. neutral
amygdala activation

Early life stress &
anygdala reactivity

No-Go accuracy, two
ICA component
beta weights, &
within-component
clusters

Logistic
regression

Discriminant
analysis

Logistic
regression

Logistic
regression,
Random
forest

10-fold CV

LOOCV

LOOCV

LOOCV

(BAC 70%)
AUC 77%
SE 72%
SP 68%
All medication
types:
Acc 75%

SNRI only:
Acc 77%

(BAC 77%)
SE 84%
SP 69%

AUC 81%

Logistic
regression:

Acc 90%
(BAC 90%)
SE 90%

SP 89%

Random forest:

Acc 84%
BAC (82%)
SE 84%

SP 80%
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Table 2.  (continued)
Outcome
Reference Subjects Treatment Modality definition Features Model Validation Performance
Tozzi et al. 124 MDD SSRI tbfMRI; Response: ROIs with BOLD Logistic LOOCV Venlafaxine
(2020) (escitalopram, Go/No-Go task >50% | in response in No-Go > regression response:
sertraline) QIDS-SR-16 Go condition in
or SNRI MDD patients & BAC 79%
(venlafaxine) healthy controls
SE 67%
SP 890/0,'
Sertraline
response:
BAC 84%
SE 95%
SP 74%
Marquand, 20 MDD SSRI (fluoxetine) tbfMRI; n-back task Response: Principal components SVM LOOCV BAC 69%
Mourzo- >50% | in based on whole-brain
Miranda, HAMD-17 activity for each task SE 85%
Brammer, condition o
Cleare and SP 52%
Fu (2008)
Meyer et al. 22 MDD SSRI tbfMRI; n-back task Remission: dIPFC, amPFC, & Single-feature LOOCV (BAC 87%)
(2019) (escitalopram) MADRS < 5 parietal lobe ROC
Nonremission: AUC 85%
MADRS > 10
SE 82%
SP 91%
Nguyen et al. 37 MDD NDRI tbfMRI; reward A in HAMD-17; ROIs from anticipation Dense 3x3 R*=0.26
(2019) (bupropion) processing task Remission: contrast maps & feedforward nested
HAMD-17 reward expectation neural Ccv RMSE = 4.71
score < 7 contrast maps networks
AUC 71%
Brandt et al. 90 MDD SSRI tbfMRI; reward HAMD-6 Age, sex, baseline Logistic 5-fold CV AUC 56%
(2021) (escitalopram); processing task Remission: HAMD-6 and number regression
an optional >50% | at of omissions in the
switch to SNRI week 4 and task, & reward-related
(duloxetine) <5 at Week 8; brain responses in
from Week 4 Nonresponse: striatum, anterior
<25% | a insula, & mPFC
Week 4 and
<50% | at
Week 8
Costafreda, 16 MDD CBT tbfMRI; sad facial Remission: Principal components SVM LOOCV BAC 79%
Khanna, expression task HAMD-17 <7 based on whole-brain
Mourao- activity to viewing SE 71%
Miranda, sad faces
SP 86%

and Fu
(2009)
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Cook et al.
(2020)

Erguzel et al.

(2015)

Patel et al.
(2015)

Pei et al.

(2020)

Sikora et al.
(2016)

129 MDD

55 TRD

33 LLD

98 MDD

29 MDD

SSRI
(escitalopram)
or NDRI
(bupropion)

r'TMS

SSRI
(escilatopram)
or SNRIs
(duloxetine
or venlafaxine)

SSRIs (mainly
escitalopram)
& SNRIs
(mainly
venlafaxine)

1-week placebo
& 10-week
open-label
antidepressant
(SSRI, SNRI,
NDRI, atypical)

rsEEG Remission:
HAMD-17
<7

rsEEG Response:
>50% | in
HAMD-17

rsfMRI; sMRI Response:
HAMD score

<10

rsfMRI Response:
>50% | in
HAMD-6

rstMRI A in QIDS

Theta and alpha power
values from FT7-FPz
and FT8-FPz channels
at baseline and
Week 1 (QEEC)

Frontal cordance
calculated from delta
& theta bands (QEEQG)

Demographics, cognitive
ability scores,
functional
connectivity index of
dorsal DMN and
anterior
SN, & structural
imaging
variables

14 priori brain regions

of interest based on
previous literature

Baseline SN rsFC

Single-feature Jack-knife
ROC cv
analysis

Artificial neural k-fold CV
network

Alternating Nested
decision tree LOOCV
(ADTree)

SVM LOOCV

Multivariate LOOCV
relevance
vector
regression

Escitalopram
remission:

Acc 64%
(BAC 65%)
SE 74%

SP 55%

Acc 85-89%
(BAC 86-89%)
SE 87-94%
SP 84%

AUC 87-91%
Acc 89%

SE 89%

SP 90%

BAC 81%
SE 78%

SP 84%

Placebo
response:
(R =0.17)
R =0.41,
p value =
0.018;
Antidepressant
response:
r=0.03,

p value =
0.340
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Table 2. (continued)
Outcome

Reference Subjects Treatment Modality definition Features Model Validation Performance

Braund et al. 229 MDD SSRI rstMRI Response: Whole-brain network SVM LOOCV Acc 75%
(2022) (escitalopram, >50% | in intrinsic FC associated

sertraline) HAMD-17 or with neuroticism (BAC 74%)

or SNRI QIDS-SR o

(venlafaxine) SE 63%
SP 85%
AUC 76%

Goldstein- 75 MDD SSRI rsfMRI Remission: Seed-based posterior Logistic LOOCV PCC-ACC/mPFC:
Piekarski (escitalopram, HAMD-17 cingulate cortex regression
et al. sertraline) <7 (BAC 78%)
(2018) or SNRI o

(venlafaxine) SE73%
SP 82%
AUC 77%

C. T. Wu 22 TRD Sham-rTMS rstMRI A in HAMD-17 Two feature sets: Elastic-net LOOCV Global brain
et al. 1. Global brain regression activity:
(2018) activity; (R* = 0.24)

2. Rostral ACC r=0.49;

seed-based p=0.023;
rostral
ACC FC:
(R =0.25)
r=0.50;
p=0018

Cash et al. 47 MDD ITMS rstMRI Response: rsFC within the SVM LOOCY, Acc 93%
(2019) >25% | in DMN & AN k-fold

MADRS; CcV SE 95%
A in MADRS
SP 92 %
(R* = 0.46)
r=10.68
p value < 0.001

Hopman 70 TRD rTMS rsfMRI Response: Seed-based analysis SVM Nested CV. Acc 89%
et al. >50% | in with left dIPFC and
(2021) MADRS subgenual ACC

Moreno- 18 TRD ECT rsfMRI Remission: dIPFC, DMN, & Logistic LOOCV Acc 89%
Ortega 24-HAMD VIS networks regression
et al. score < 7
(2019)
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Frassle et al.
(2020)
Queirazza

et al.
(2019)

85 MDD

25 MDD

SSRIs or no
treatment

Computerized
CBT

thfMRI;
emotional face
perception task

model-based
fMRI; RL task

Long-term
outcomes:
remitted vs.
improved
vs. chronic,
based on a
latent class
growth analysis
using CIDI
and LCI

Response:
>50% | in
BDI-II

Effective connectivity
pattern in the network
mediating emotional
face perception

Neural activity encoding
weighted reward
prediction errors

SVM

SVM

Nested
LOOCV

LOOCV

Chronic vs.
remitted:

AUC 87%
BAC 79%
SE 97%
SP 60%

Improved vs.
remitted:

AUC 63%
BAC 61%
SE 77%
SP 45%
AUC 82%
BAC 72%
SE 63%

SP 83%
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Treatment response prediction in major depression using brain activity

Cross-validation:

A validation technique used to
estimate model performance by
training the model on a subsample of
data and validating model
predictions on the remaining sample.
This process is often repeated by
permuting the data.

External validation:

A technique that validates a model
trained on one dataset on an
independently acquired dataset to
determine the model’s
generalizability and reproducibility.

Network Neuroscience

explicit analysis of treatment response prediction and incorporated validation techniques (e.g.,
cross validation or external validation) to increase the generalizability of findings. Studies that
investigated associations between various neuromarkers and treatment response but did not
use an out-of-sample validation to assess their predictive power are not discussed (for these
studies, see recent reviews: ; ;

; ; ; ). Additionally, in
the interest of brevity, studies with sample sizes of 30 and below will not be discussed because
of their limited generalizability (see and 2 for study summaries).

The literature search was performed during the period of June to October 2021. Using the
search terms depress* AND treatment response prediction AND (accuracy OR sensitivity OR
specificity OR regression) AND (fMRI OR EEG) on PubMed yielded 328 articles. Following a
double rater assessment procedure, 35 articles met the inclusion criteria, with the main rea-
sons for exclusion being (a) reviews and meta-analyses; (b) study protocols; (c) studies inves-
tigating other disorders; and (d) studies using no validation techniques. A further literature
search was conducted using additional sources: (a) reference lists of already qualifying papers
and related reviews, and (b) a search engine ResearchRabbit ( ), which
allows for the discovery of the most related papers based on a collection of input papers. This
revealed 18 additional articles, leading to a total of 53 articles, which are reviewed below
( , and 2).

Strongly Data-Driven Studies

rsEEG. Resting-state EEG (rsEEG) studies are used to evaluate intrinsic neural activity, which is
not elicited through a specific task. Resting-state measures often require less domain-specific
knowledge, while EEG itself is inexpensive and quick to administer. EEG signals are often clas-
sified into frequency bands (i.e., delta, theta, alpha, beta, and gamma), each of which have been
associated with different brain states (e.g., sleep, rest, alertness). Common EEG measures used as
features for treatment response prediction include absolute and relative power, as well as coher-
ence of frequency bands, and the majority of data-driven rsEEG studies have focused on predict-
ing first-line antidepressant response (i.e., selective serotonin reuptake inhibitors, SSRIs).

While features from all frequency bands may be valuable for predicting first-line antidepres-
sant response, the most predictive features tend to be from either alpha and/or theta bands. A
recent study by found alpha and theta
power in the frontoparietal area to be highly predictive of SSRI (escitalopram) and
norepinephrine-dopamine reuptake inhibitor (NDRI) (bupropion) response, with clinical,
EEG, and current source density measures achieving 88% accuracy using an SVM classifier.

demonstrated similar results, whereby high alpha band power in the
ACC was highly predictive of escitalopram response. An SVM classifier trained on clinical
and EEG features with leave-one-site-out cross-validation (LOSOCV) yielded a slightly lower
balanced accuracy (BAC) of 79%.

and analyzed rsEEG data from two large multisite
clinical trials for depression: EMBARC (Establishing Moderators and Biosignatures of Antide-
pressant Response in Clinic Care), and iSPOT-D (International Study to Predict Optimized
Treatment for Depression), respectively. introduced their Sparse EEG
Latent SpacE Regression algorithm to predict sertraline response, and found that only alpha
band power—and not theta, beta, or gamma—significantly predicted symptom improvement
(r=0.60, p=2.88 x 10°""). The same model could not predict symptom improvement in the
placebo group, suggesting that the model captured features unique to the antidepressant
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Figure 2. A visual summary of the reviewed studies. (A) The number of studies published each year. (B) Reported outcome prediction accu-
racy and (C) coefficient of determination as a function of sample size and broken down by validation methods used. LOOCV: leave-one-out
cross-validation. LOSOCV: leave-one-site-out cross-validation. (C-I) Statistics of the reviewed 53 studies on the relevant metrics of study
design. (D) The definition of outcomes. Symptom improvement: predicting symptom improvement after treatment on a continuous scale.
Remission: predicting whether a certain threshold (e.g., <7 total score on the 17-item Hamilton Rating Scale for Depression, HAMD-17, after
treatment) will be reached. Response: predicting whether a certain amount of reduction in symptoms will be reached (e.g., >50% reduction in
the total HAMD score after treatment). (E) The scale used to assess depressive symptoms. (F) The studied patient population. MDD: major
depressive disorder. TRD: treatment-resistant depression. LLD: late-life depression. (G) The neuroimaging modality used for data collection. rs:
resting state. th: task-based. (H) The model class used for treatment response prediction. ROC: receiver operating characteristic. (I) The treat-
ment type for which predictions were made. SSRI: selective serotonin reuptake inhibitor. SNRI: serotonin-norepinephrine reuptake inhibitor.
NDRI: norepinephrine-dopamine reuptake inhibitor. tDCS: transcranial direct-current stimulation. rTMS: repetitive transcranial magnetic stim-
ulation. ECT: electroconvulsive therapy. CBT: cognitive behavioral therapy.

response. The authors further validated the model on an independent rsEEG dataset from
Fonzo et al. (2019), which yielded a similar classification performance based on fMRI record-
ings (r=0.44, p= 0.02; see the section Theory-Driven Task Design for discussion on the study),
thus providing evidence for a neurobiological phenotype that can be detected across neuro-
imaging modalities. Rajpurkar et al. (2020) predicted individual symptom improvement in
response to three SSRIs (escitalopram, sertraline, or venlafaxine). Baseline symptom scores
and relevant EEG features were used to train a gradient-boosted decision tree model achieving
a concordance index of >0.8 on 12 out of 21 clinician-rated symptoms (R*> 0.3-0.7). Concor-
dance index indicates the probability that, given two random patients, the algorithm will
correctly identify which patient showed greater improvement. Surprisingly, the inclusion of
treatment groups did not significantly improve model performance, suggesting that the EEG
markers were general predictors of treatment outcome instead of predictors of differential treat-
ment response.

For patients who fail to respond to first-line antidepressants, or who are unable to tolerate
medications, repetitive transcranial magnetic stimulation (rTMS) may be used as an alternative

Network Neuroscience 1083
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Network Neuroscience

treatment. used primarily alpha and theta frequency band features to
predict rTMS response, achieving 87% accuracy, and found that rTMS responders showed ele-
vated theta connectivity and lower alpha power at baseline and Week 1, while nonresponders
showed typical theta connectivity (similar to that of controls). However, the same group later
attempted to replicate these results using a large independent dataset (N = 193), and found no
significant difference in theta connectivity or alpha power between rTMS responders and non-
responders ( ). used a
combination of power spectrum features across five frequency bands to predict rTMS response
in MDD, achieving 91% BAC, and found that rTMS responders had significantly lower base-
line beta power.

rsfMRI.  rsfMRI measures spontaneous brain activity believed to reflect functional communi-
cation between spatially distributed brain regions ( ). Growing lit-
erature supports the notion that depression is associated with widespread aberrant functional
connectivity, mainly in frontostriatal and limbic brain networks ( ;

; ). Hence resting-state functional connectivity (rsFC) patterns,
either in specific networks or on a whole-brain scale, can provide a platform for investigating
the hypothesized functional disconnectivity effects in MDD and network changes in response
to treatment.

Similar to rsEEG, a majority of rsfMRI studies investigated the impact of first-line pharma-
cotherapeutic interventions, and hyperconnectivity in the default mode network (DMN) was a
common emergent finding across studies. A multisite study by applied a
multilayer modularity framework with leave-one-site-out CV to predict SSRI (escitalopram)
response using whole-brain features of functional segregation and integration, achieving accu-
racy rates of 69-72% across sites. Treatment responders showed stronger connections
between the ACC and nodes within the DMN, suggesting that high interactions of the ACC
with other regions may be predictive of treatment response. predicted
SSRI (sertraline) versus placebo response using major cortical rs-networks and subcortial
regions with a linear mixed model (r = 0.22-0.36). In general, the authors found that higher
connectivity within the DMN and between the DMN and the executive control network pre-
dicted better treatment outcome. Using data from the international iSPOT-D trial,

predicted SSRI (escitalopram or sertraline)
and SNRI (venlafaxine) response using intrinsic FC derived from task-based fMRI data. The
authors found that irrespective of medication type, greater connectivity within the DMN
was predictive of treatment remission (BAC 68%). In comparison, using a functional connec-
tome “fingerprint” at one week posttreatment, found that, compared with
placebo, reductions in the DMN predicted better response to sertraline (r = 0.27), suggesting
an early pattern of normalization in the DMN. Furthermore, the authors investigated the
generalizability of the sertraline connectome fingerprint in predicting ketamine (rapid antide-
pressant) response. The model predicted ketamine response compared with an active control
(lanicemine; r = 0.57), but failed to predict ketamine response compared with placebo (p >

0.05). Using the same study sample, identified a baseline functional connec-
tome fingerprint that significantly predicted symptom improvement irrespective of treatment
type (sertraline or placebo), but unlike , failed to predict the antidepressant

treatment-specific response.

A couple of studies used whole-brain rsFC to investigate treatment response in mixed-
treatment MDD cohorts (medications included SSRIs, SNRIs, and NDRIs).
used a linear regression model and significantly predicted symptom improvement (r = 0.43,
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p=2.73 x 10°%) at one month, and in out-of-sample patients for up to three months.
developed a novel spatiotemporal graph convolutional network (STGCN) frame-
work, which predicted treatment response with 90% accuracy.

A study by used whole-brain resting-state networks to investigate
differential rTMS response between four depressive subtypes, which are neurophysiological
subtypes defined by distinct patterns of dysfunctional connectivity in limbic and frontostriatal
networks. Using connectivity features and this biotype classification, an SVM classifier was
able to predict rTMS response with 90% accuracy. The most discriminating connectivity fea-
tures involved the dorsomedial prefrontal (dmPFC) stimulation target and the left amygdala.
The final model was further validated on an independent replication set (n = 30) and obtained
comparable accuracy rates (88-93%). However, when attempted to
replicate depressive subtypes identified by Drysdale and colleagues on an independent sam-
ple (n = 187), the authors were unable to replicate these findings and found the methodology
to be unreliable in their sample.

Finally, several studies have investigated rsFC patterns associated with electroconvulsive
therapy (ECT) response. used standard group ICA to extract rs-
networks, each of which trained an SVM classifier, and found that rs-networks centered in
the dmPFC (BAC = 85%) and ACC (BAC = 78%) significantly predicted ECT response in severe
and treatment-resistant depression. used multimodal fMRI metrics to pre-
dict ECT response achieving significant BACs (58-68%). Notably, the left dIPFC and subgenual
ACC, both targets of rTMS, as well as connectivity between motor and temporal networks
(near ECT electrodes), were consistently identified as informative features in the models.
Finally, a larger study (n = 122) by used whole-brain rsFC to train a
connectome-based model to predict depressive rating changes and remission status following
ECT. Negative FC networks (anti-correlated with changes in depressive scores) were the most
predictive (r=0.51, accuracy = 76%), with FC between the inferior frontal gyrus and temporal
regions demonstrating the most predictive power.

Combination of Data-Driven and Theory-Driven Methods

Up until now we have discussed studies that relied solely on data-driven approaches through-
out the analysis pipeline. In this section, we will discuss studies that combined data-driven and
theory-driven methods by considering two dimensions: data collection and dimensionality
reduction.

Theory-driven task design. Several studies have incorporated domain knowledge at the level of
the study design itself, that is, by easuring brain activity during cognitive tasks that probe spe-
cific mechanisms previously shown to be implicated in MDD. Broadly, these mechanisms
relate to reward processing and emotion regulation ( ; ;

).

Task-Based EEG. Using an EEG visual oddball task to predict SSRI response,

compared three time-frequency decomposition tech-
niques for feature extraction. EEG-based wavelet features extracted from frontal and temporal
areas involving delta and theta frequency bands were the most predictive, with a logistic
regression model producing an accuracy of 92%. employed an EEG
working memory task to evaluate rTMS response in patients with treatment-resistant depres-
sion achieving 91% BAC with an SVM classifier. At baseline and Week 1, responders showed
enhanced fronto-midline theta power and higher theta connectivity compared with
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nonresponders. Although, using rsEEG data, increased theta connectivity in rTMS responders
was later replicated by the same group ( ), this finding was subsequently
disproved using a large independent dataset ( ).

Task-Based fMRI. The majority of task-based studies employed emotional paradigms to probe
abnormal processing of emotional stimuli commonly implicated in MDD (

). Using an emotional faces task, predicted SSRI (escitalopram)
response based on the mean ACC activity to sad versus happy facial expressions. A moderate
accuracy of 72% was achieved with responders showing increased pretreatment pregenual
ACC activity to sad versus happy faces. used an emotional conflict task
to predict symptom improvement following SSRI (sertraline) treatment and found that a greater
downregulation of conflict-responsive regions predicted better outcomes (r= 0.49, p < 0.001).
The same model could not predict improvement in the placebo group, suggesting that the
model captured features unique to the antidepressant. employed an emo-
tion regulation and emotion reactivity task, as well as rsfMRI to predict SNRI (venlafaxine)
response in late-life depression (LLD). Using whole-brain connectivity and regions of task acti-
vation at baseline and one day following treatment, a logistic regression model achieved an
AUC (area under the curve) of 77%, outperforming the use of baseline fMRI alone. The major-
ity of predictive regions were in the frontal cortex, with the emotional reactivity task producing
the most informative features.

Two studies assessed patients from the iSPOT-D trial (SSRI/SNRI treatment), whereby an

emotional faces paradigm was used to investigate amygdala reactivity.

found that amygdala hyporeactivity to subliminal happy and threat expressions was
a general predictor of treatment response (accuracy 75%). However, amygdala reactivity to
subliminal sadness functioned as a differential predictor, whereby nonresponders to SNRIs
showed pretreatment hyperreactivity to subliminal sadness, which progressed to hyporeactiv-
ity posttreatment, and predicted SNRI response with 77% accuracy.

investigated the interaction between amygdala engagement and early life stress to
predict “functional remission,” which the authors defined by combining measures of the
clinician-rated HAMD, self-reported 16-item Quick Inventory of Depressive Symptomatology—
Self-Rated (QIDS-SR16), and observer-rated functional capacity using the Social and
Occupational Functioning Assessment Scale. A discriminant analysis yielded a BAC of 77%,
and similar to , in patients with low early life stress, lower amygdala
reactivity to both happy and threat-related stimuli increased the likelihood of remission. In
comparison, for those with high exposure to early life stress, greater amygdala reactivity to
happy stimuli predicted remission.

Using a Go/No-Go task,

investigated differential response to SSRIs (escitalopram and sertraline) and SNRIs (venlafax-
ine). Connectivity between the dIPFC and the supramarginal gyrus (SMG) and between
SMG and the middle temporal gyrus (MTG) was associated with response to sertraline and
venlafaxine, but not to escitalopram. Using baseline symptom scores and the mean FC contrast
values as inputs to a logistic regression classifier, venlafaxine response was predicted with BAC
of 79%, while sertraline response was predicted with BAC of 84%. Interestingly, higher FC
between both dIPFC-SMG and SMG-MTG was associated with response to sertraline, whereas
lower connectivity was associated with response to venlafaxine.

employed a reward processing task and deep learning model to pre-
dict depressive rating changes and response status following NDRI (bupropion) treatment.
Regions of activation were extracted from two contrast maps, one for anticipation and the
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other for reward expectation. The final model achieved a root mean square error of 4.71 (R* =
0.26, AUC = 71%), and important clusters included the medial frontal cortex, amygdala, cin-
gulate cortex, and striatum. The final model performed poorly (negative R?) on SSRI (sertraline)
and placebo-treated subjects from the same dataset, suggesting that the model likely learned
features specific to the bupropion response. Finally, a recent study by used
a comparatively large MDD cohort (n = 90) and found that pretreatment reward-related brain
activity was not predictive of SSRI (escitalopram) treatment response. The authors also found
no differences in reward reactivity estimates between healthy and depressed individuals and
no change following eight weeks of treatment.

Theory-driven feature selection

rsEEG. Two studies used quantitative EEG and theory-driven feature selection, particularly
measures in the theta band over frontal regions, to predict treatment outcome.

predicted SSRI (escitalopram) and NDRI (bupropion)
remission using a previously validated biomarker, the Antidepressant Treatment Response
(ATR) index ( ; ), which combines theta and alpha power
metrics at baseline and Week 1 in frontotemporal channels. Higher ATR values were predictive
of SSRI remission (BAC 65%), but not NDRI remission, which was selected as a control com-
parison. used an artificial neural network to predict rTMS response in
patients concurrently receiving SSRIs, and using frontal cordance values from theta and delta
bands, the model achieved BACs of 86-89%.

rstMRI. Based on previous literature, two studies selected a subset of resting-state features for
the prediction of SSRI and SNRI response. In late-life depression, employed
an Alternating Decision Tree model to predict antidepressant response yielding 89% accuracy
based on cognitive scores, structural, and rsFC features (in the default mode network, DMN,
and anterior salience network, aSN). Fewer structural connections in the aSN was predictive of
response, while lower FC in the dorsal DMN was predictive of nonresponse.

used an SVM classifier based on the FC of 14 priori brain regions and predicted antidepressant
response with a BAC of 81%. Notably, a model trained using whole-brain features achieved
the same accuracy (81%).

Similar to , used iSPOT-D data (SSRI/SNRI
treatment) to investigate intrinsic FC networks that characterized neuroticism in 229 MMD
patients, and using an SVM predicted treatment response with a BAC of 74%. Greater connec-
tivity within and between the salience, executive control, and somatomotor brain networks
was associated with higher baseline neuroticism. Irrespective of treatment type, increased net-
work activity was predictive of poorer treatment outcomes that was not mediated by baseline
neuroticism. also used iSPOT-D data, to predict treatment
remission using connectivity within the DMN, with a focus on the posterior cingulate cortex
(PCQ). Connectivity between the PCC and ACC/mPFC together was predictive of remission
(82% accuracy), whereby nonremitters showed relative hypoconnectivity compared with
remitters, who showed intact connectivity similar to that of controls. Differential prediction
of remission using PCC connectivity did not survive correction.

significantly predicted rTMS response using rsFC in the DMN and affec-
tive network (AN), as well as BOLD signal power and Week 1 clinical response (r= 0.68, p <
0.001, 93% accuracy). However, some significant relationships between individual features
and treatment outcome were only observed once participants with the lowest treatment out-
come (<0% change) were omitted. attempted to replicate previous
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findings that stronger dIPFC-sgACC anticorrelated connectivity was associated with rTMS
response; however, the authors could not confirm this relationship. Instead, using seed-based
features of the left dIPFC (rTMS target) and sgACC, the authors predicted rTMS response with
89% accuracy, finding that greater connectivity disruptions involving the central executive
network was associated with poorer response.

GENERATIVE MODELING AND GENERATIVE EMBEDDING

Compared with the studies reviewed so far, generative embedding approaches have the poten-
tial to better capture disease mechanisms and provide more interpretable treatment response
predictions ( ; ). Generative embedding incorporates
generative models of information processing dynamics in the brain. By fitting these models to
(brain or behavioral) data, one can effectively reduce the dimensionality of the raw data to a
handful of highly informative model parameter estimates—that is, mechanistically interpret-
able features. These parameter estimates are then used as input features in machine learning
algorithms to predict treatment response. Depending on how well these models capture mech-
anisms relevant for treatment response prediction, this approach could improve not only the
interpretability of the predictions but also their accuracy. However, generative embedding is
yet to be fully utilized in the context of treatment response prediction in MDD. In this section,
we would like to highlight several lines of research employing generative modeling
approaches that have been used to study MDD but have not been applied to treatment
response prediction.

Generative Models of Brain Data

One way to model the information processing dynamics in the brain is by using dynamic
causal modeling (DCM), which allows for estimation of directed interdependencies (i.e., effec-
tive connectivity) among multiple brain regions ( ; ).
Unlike functional connectivity, which describes temporal correlations in BOLD responses
across brain regions, effective connectivity rests on a generative model, which specifies
directed relationships between populations of neurons ( ). DCM s thus able to
account for asymmetries in forward and backward connections ( ;

; ), which creates a possibility for a more detailed char-
acterization of disease mechanisms. Furthermore, recent studies using DCM for electrophys-
iological data were able to incorporate microscale details such as the conductance of specific
receptor populations ( ;

; ; ), demonstrating the potential of DCM for
multilevel description (from micro- to macroscale) of disease mechanisms. Estimating receptor
densities in vivo from noninvasive EEG recordings would be a major step towards linking psy-
chiatric symptoms to the mechanisms of action of pharmacological interventions that target
specific neurotransmitter systems.

While many studies have applied DCM for studying mechanisms underlying MDD (

), so far very few have used it for treatment response prediction. used
effective connectivity measures obtained from DCM to investigate treatment response to esci-
talopram. Pretreatment effective connectivity during emotional face processing was found to
discriminate nonremitters from remitters and controls after six weeks of treatment. Nonremit-
ters showed reduced endogenous connectivity from the amygdala to the ventrolateral PFC and
to the ACC, and increased modulation of the ACC to the amygdala when processing fearful
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Extracts features of latent cognitive
mechanisms using theory-driven
generative models of behavioral data
and uses those features as regressors
in GLM-based fMRI analysis to find
neural correlates.
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faces. However, these results were obtained by performing a series of t tests and there was no
analysis of how accurately these effects could predict treatment at the individual level.

is the only study to apply a generative embedding approach for pre-
dicting illness course in MDD. Unlike the studies reviewed so far, this study aimed to predict
long-term (up to two years) trajectories of MDD in a naturalistic cohort (participants were
receiving mixed treatments), and thus it is not directly comparable, but it serves to illustrate
how generative embedding could be applied for treatment response prediction. In this study,
illness course was defined by dividing participants into three different groups: remitted (rapid
remission); improved (slow remission); and chronic (treatment-resistant). Pretreatment fMRI
data recorded during an emotional face perception task was used for predicting illness course.
Six regions of interest (ROIs) were selected based on their association in the literature with the
extended face perception network: bilateral occipital face area, fusiform face area, and
amygdala. The best model allowed emotion processing to modulate forward and backward
intra- and interhemispheric connections among homotopic brain regions. Using effective
connectivity parameters as features, SVM predicted chronic versus remitted groups with
BAC of 79%, and improved versus remitted groups with BAC of 61%. Importantly, this
performance exceeded that of conventional non-generative methods that used functional
connectivity or local activation (computed from the same network of ROlIs) as features for
classification; these did not result in above-chance performance.

Generative Models of Behavioral Data

While generative models of brain dynamics can help us explain neural data, they fall short
of explicitly linking these dynamics to behavior. Given that relevant clinical symptoms man-
ifest in behavior, explaining observable behavior is an important consideration for generative
models. In the research setting, MDD has been associated with deficits in value-based
decision-making, especially in tasks involving reinforcement learning and expectations about
the future ( ; ;
). Not surprisingly, one of the most popular frame-
works for modeling these aspects of behavior in MDD has been reinforcement learning (RL),
which models adaptive decision-making in the face of rewards and punishments (

). The central variable in RL is the reward prediction error (RPE)—the difference
between expected and observed reward/punishment—which guides learning of value of
different stimuli, which in turn guides actions. Importantly, RL modeling approaches make
it possible to study reward processing in a lot more detail and investigate how different
elements of the decision-making process such as RPE, expected value (“wanting”), reward
sensitivity (“liking”), learning rate, memory of previous reinforcement, noisiness of action
selection, and so on, might be implicated in MDD and how they might relate to different
MDD subtypes ( ; ;

). Crucially, even though RL models are fitted to behavioral data,
the computational processes described by them can then be used to investigate brain activity
specific to this process by including model variables as regressors in a general linear model
(GLM), which in neuroimaging data analysis, has been known as model-based fMRI
( ; ;

).
To date, only one study has applied RL model-based fMRI for treatment response prediction
in MDD. aimed to obtain
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mechanistically meaningful fMRI predictors of response to computerized cognitive behavioral
theraphy (cCBT) based on pretreatment brain activity during a probabilistic win/loss reversal-
learning task. The data were analyzed by first fitting an RL model to the behavioral data to
estimate trial-wise RPEs. Next, RPEs, weighted by a dynamic learning rate, were used as
regressors in a GLM when analyzing the fMRI data. Finally, the resulting regression coefficients
were used to predict cCBT treatment response using an SVM, RVM, and logistic regression. All
classifiers showed comparable performance, with the SVM vyielding the best performance
(BAC 72%). Neural activity encoding-weighted RPEs in the right striatum and right amygdala
were the most discriminative features of treatment response, with greater pretreatment activity
predicting better response. The authors suggested that greater neural signaling of the weighted
RPE might make cognitive restructuring practiced during cCBT more effective, fostering more
balanced beliefs about the self and the world.

MDD can also be understood within a more general computational framework of Bayes-
ian inference ( ;
; ; ). Central to
Bayesian accounts of decision-making is the observation that external (world) states and
internal (bodily) states cannot be directly observed and must be inferred from ambiguous
sensory information. Similarly, different action policies and their consequences also carry
varying degrees of uncertainty. All these types of uncertainty shape one’s expectations of
rewarding or aversive outcomes (cf. reinforcement learning), but even more importantly, they
determine how information is sampled (via action selection and attention) and to what extent
the resulting positive or negative experiences are integrated into one’s model of the world.
Within this framework, deficits in value-based decision-making in MDD can be cast as a
biased construction of internal and external states, which results in a maladaptive positive
feedback loop involving one’s model of the world, action selection, and mood. The biases
themselves could result from a miscalibration of precision (the inverse of uncertainty) asso-
ciated with prediction errors (PEs)—which, similarly to RPEs, represent the difference
between expected and experienced sensory input and guide learning (

; ; ). For instance, attenuation of PEs would make
one immune to changing one’s negative beliefs in the face of disconfirming evidence (

; ). On the other hand, increased precision of PEs for social
contexts may increase sensitivity and attention to interpersonal cues and could lead to social
withdrawal and anhedonia ( ). Finally, in the context of interoception, a
miscalibration of the precision associated with PEs would lead to a disruption of allostasis
(i.e., the brain’s ability to anticipate and flexibly adapt to changing metabolic needs), which
could explain fatigue and inflammation observed in MDD ( ;

). Relevantly, recent preliminary findings by indicate that pretreat-
ment allostatic load and metabolic dysregulation might be predictive of SSRI response. Thus,
adopting a Bayesian framework allows for integration of brain and behavior as well as the
body and physiological states. This potentially affords a much more comprehensive picture
of MDD. So far, to the best of our knowledge, no studies have applied these models for
treatment response prediction.

OTHER REMAINING CHALLENGES

While theory-driven generative models have the potential to improve our understanding of
MDD as well as capture interpretable and discriminative features for treatment response pre-
diction, multiple other challenges remain.
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Treatment Response Prediction Versus Differential Treatment Response Prediction

Most of the studies reviewed in this paper have focused on building a model that can predict
treatment response for a single intervention. In clinical practice, a more useful prediction
would be differential treatment response prediction, indicating which of several available treat-
ments is the most likely to lead to improvement for a given patient ( ;

). This of course could be determined by applying individual models for
each treatment and then aggregating the results to derive differential prediction. However, if
different models have to rely on different data modalities and require separate validations, this
would be much more time- and resource-intensive. Therefore, a single model that can reliably
predict treatment response to multiple treatment options would be much more useful in
practice.

Several of the reviewed studies did involve multiple treatments, but differential treatment
response prediction remains very limited. A tbfMRI study by found that
greater functional connectivity between both dIPFC-SMG and SMG-MTG during behavioral
inhibition was associated with response to SSRI sertraline, whereas lower connectivity was
associated with response to SNRI venlafaxine; however, their model failed to predict response
to SSRI escitalopram. Another tbfMRI study by found amygdala
hyporeactivity to subliminal happy and threat expressions to predict treatment response to
escitalopram, sertraline, and venlafaxine, while amygdala hyperreactivity to sad expressions
specifically predicted nonresponse to venlafaxine. Investigating the same three treatments, two
rsftMRI ( ; ) and one rsEEG (

) studies, were only able to predict treatment response across the treatments but
not differential treatment response. Some studies involving multiple treatments did not
investigate differential treatment response despite having large enough sample sizes (

; ; ), while others were limited by too small samples

( ; ; ;

; ).

For more clinically relevant results, future studies should focus on establishing predictions
of differential treatment response and include a wider range of treatments (e-psychotherapy,
ECT, rTMS, first-line antidepressants, rapid-acting antidepressants, psychedelic therapy). Bear-
ing in mind the heterogeneity of MDD, this would be of more benefit than comparing very few
treatments with similar mechanisms of action (e.g., escitalopram vs. sertraline). This, however,
would require large samples and multisite studies, which can be practically challenging. One
of the largest current projects, iSPOT-D ( ), aims to recruit N = 672 per
treatment arm but includes only three treatments (escitalopram, sertraline, and venlafaxine).

Defining Outcomes

Problems with dichotomization. The majority of studies reviewed here focused on predicting
either treatment response or remission by dichotomizing the reduction in symptoms of
depression—with response often defined as >50% reduction in symptoms from the baseline
and remission defined as reaching a score below some low threshold, such as <7 for HAMD-
17. This is rather problematic because dichotomizing continuous variables leads to a loss of
information and thus a loss of statistical power ( ;

). For example, a patient with 49% reduction in symptoms will be considered to be the
same as a patient with 0% reduction (both being “nonresponders”) but categorically different
from a patient with 50% reduction in symptoms (a “responder”). Ignoring this within-group
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variability could lead to false inferences about the features that are predictive of treatment
response ( ). Even more importantly, such coarse categorization under-
mines the very possibility of accurately predicting treatment outcomes.

Thirteen studies have circumvented this problem by applying regression models for predicting
the symptom improvement on a continuous scale (see and 2), and one study (

) predicted improvement in individual symptoms, rather than summed symptom
scores. Although the majority of studies produced strong results (median R* = 0.24), it is not
straightforward to compare them with the classification accuracy reported in the other studies
that dichotomized symptom scores. In principle, predicted symptom scores could be converted
to classification accuracy by post hoc dichotomization. This was exemplified by two studies,
whereby the model’s regression outputs were dichotomized post hoc to obtain remission
( ; ) prediction accuracy. Converting symptom improvement
predictions into classification accuracy might also have benefits in clinical applications.

Another consideration when modeling symptom improvement is whether baseline depres-
sion severity should be included as a predictor or used to derive the predicted outcome (the
difference between baseline and posttreatment depression severity). In some cases, these
options can lead to diverging results ( ; ). However,
when the baseline exhibits collinearity with other predictors of interest—as we might expect to
be the case for depression severity and brain activity—including baseline as a predictor has
been shown to lead to biased results ( ;

; ). In line with this, all symptom
improvement studies reviewed here did not include baseline severity as a predictor. Note that
when predicting dichotomized outcomes, baseline severity is also implicitly included in the
outcome definition for the classification of responders versus nonresponders, because treat-
ment response is usually defined as percentage change scores (e.g., 50% symptom improve-
ment compared with baseline). Conversely, in the case of remitters versus nonremitters, the
baseline does not feature at all as remission is defined as absence of clinically relevant symp-
toms at follow-up regardless of baseline symptom severity. However, among the reviewed
studies that predicted dichotomized outcomes, the vast majority tested and reported no differ-
ences in baseline scores between the groups, which makes the considerations of baseline
effects not relevant for the interpretation of the results. When baseline differences do exist
in the context of predicting remission, including baseline among predictors should be consid-
ered (e.g., ).

Predicting improvement of individual symptoms to address MDD heterogeneity. It is also worth con-
sidering whether using the overall improvement across symptoms is sufficiently informative for
predicting treatment outcomes. MDD is a broad category, and diagnosed individuals display
diverse symptom profiles, with some sharing no symptoms in common ( ;

; ). This heterogeneity is also reflected

in the most commonly used MDD rating scales, such as HAMD ( ), MADRS
( ), BDI ( ),
and QIDS ( ); these instruments differ considerably in their item content
because they place different emphasis on different MDD symptoms ( ). Devel-

oping models that can predict treatment effects on each individual symptom, thus, would
make it possible to account for heterogeneity in MDD and would prevent problems of com-
paring study findings based on total depression scores that are derived from instruments that
overlap but that are not interchangeable. One exemplar study reviewed here (

) addressed this issue by building a model to predict the change in each of the 21 items in
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HAMD-21 based on rsEEG data. The authors used gradient-boosted decision trees (GBDT),
which allows for modeling of nonlinear associations. Their model achieved a concordance
index of >0.8 on 12 out of the 21 symptoms (R of 0.32-0.7). These results are encouraging
and suggest that prediction of treatment effects on individual MDD symptoms is feasible.

Patient-centered definition of outcomes: Functional recovery and quality of life. Another consider-
ation is that the widely adopted depression scales used to assess symptom severity do not capture
all relevant aspects of treatment outcomes. From a patient’s point of view, symptom resolution is
only one factor in determining remission from depression. Positive aspects of mental health
( ), functional recovery ( ;

; ), and quality of life (QoL;

) are just as important. MDD-related functional impairment can span multiple domains such as
occupational, social, physical, and cognitive functioning, for which both objective and subjective
measures exist. QoL highly overlaps with functional impairment measures but often assesses
well-being across a wider variety of domains, including emotional well-being and overall life
satisfaction, and is often based on subjective self-rating of these domains (

; ; ). The impact of MDD on the afore-
mentioned domains is not always well captured by the scales designed to assess depressive symp-
toms, while remission of depressive symptoms alone does not necessarily lead to full functional
recovery ( ) and does not fully restore QoL ( ;

). Relatedly, the narrow assessment of MDD symptoms does not take into account
treatment side effects, which are very common for antidepressant drugs (

). Only one of the reviewed studies ( ) focused on the
prediction of functional remission.

Understanding the differential effects of available treatments on these measures is therefore
an important research direction. A meta-analysis comparing CBT and SSRI treatments found
similar effects on QoL ; however, depression improvement was associated with increased QoL
only in the CBT group ( ). Another recent study by

found depression symptom and QoL improvements to be associated with
partially distinct changes in functional connectivity of reward neurocircuitry, which was also
differentially affected by different antidepressants (sertraline, venlafaxine-XR, and escitalo-
pram). Finally, found rsEEG beta band power at baseline to be strongly
correlated with QoL outcomes at the three-year follow-up, and this correlation was indepen-
dent of a reduction in symptoms. Following this line of research, to achieve a more complete
assessment of treatment outcomes, future studies should consider including functional recov-
ery and QoL among the predicted treatment outcomes.

Reliability of Prediction Accuracy: Sample Size and Validation

Based on the American Psychiatric Association recommendations, treatment response predic-
tion accuracy of at least 80% would be considered to have clinical utility (

). Most of the reviewed studies report prediction accuracy above 80%, and thus would
appear to have sufficient accuracy. However, these numbers are likely to be positively biased.
The reviewed studies varied considerably in sample size as well as validation methods (see

and 2)—both of which affect the generalizability of the reported prediction accuracy

( ; ; ;
).

A substantial number of studies were not included in this review because of a lack of val-

idation methods. Such studies reported classification accuracy for the data that the classifier
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was trained on; this leads to overfitting and poor performance on unseen data (

). To improve generalizability, the majority of studies used internal validation,
namely LOOCV or k-fold CV, which trains the classifier on all but a subset of patients and uses
the left-out patients for testing model accuracy—repeating this process by permuting all data.
However, for the median sample size of the reviewed studies, N = 47, using LOOCV can still

lead to accuracy errors of up to ~15% ( ), with k-fold suffering from similar
problems ( ). The least biased method, nested CV,
adds an additional layer of validation for testing the model on an unseen portion of the data
( ; ; ). Nested CV is especially

important for data-driven feature selection (i.e., filtering) where certain features are removed if
they are not associated with the target variable (e.g., treatment response). If done for the whole
dataset, this is problematic because it leads to positively biased prediction results. To prevent
data leakage, all data preprocessing (e.g. feature selection, imputation, hyperparameter tuning)
should be embedded within the cross-validation procedure. Nested CV was used by only six
of the reviewed studies ( ; ;

). However, for sample sizes between 100 and 200, which a few reviewed studies
had (see and 2), the error associated with the reported accuracy could still be up to
8-10%, regardless of the CV method used ( ).

Irrespective of the internal validation used, test cases are randomly selected from the same
dataset on which the training is performed. The generalizability of such results can thus be
undermined by sample- or site-specific confounds. A good way to protect from site-specific
confounds is to perform leave-one-site-out CV (LOSOCV), which was done by two multisite
studies: , performing LOSOCYV across four different sites (N = 122), and

, performing LOSOCYV across three different sites (N = 106). To properly test a
model’s performance, an independent external dataset, which may differ with respect to
clinical assessments (e.g., HAMD vs. MADRS), inclusion criteria (e.g., as it relates to comor-
bidities), and data acquisition/preprocessing parameters, is required. For example, the model

by , using rsEEG to predict rTMS response in treatment-resistant depres-
sion (N = 50) and achieving BAC 86% with k-fold CV, was not predictive of treatment response
when tested on an independent dataset of N = 193 ( ). Similarly,

found four depressive subtypes from rsfMRI data, one of which was
associated with large response rates to rTMS treatment; however, these subtypes could not
be reproduced in an independent study ( ).

The ultimate test of treatment response prediction will require prospective validation stud-
ies to assess the actual improvement of outcomes following prediction-based treatment selec-

tion as compared with treatment-as-usual ( ). Such studies will also
require careful consideration of how treatment response predictions can be most optimally
integrated into the clinical workflow ( ).

Two conclusions can be drawn from the generalizability issues discussed above. First, for
more informative results, studies should employ validation methods that are less biased, such
as nested CV. While more practically challenging, to further increase generalizability of results,
studies need to perform external validation of their model predictions. Second, small sample
sizes create a bottleneck for any model validation efforts. Thus, multisite studies with larger
sample sizes (>100) will be crucial for producing sufficiently reliable results. Currently, such

initiatives include iSPOT-D ( ), which aims to recruit N = 672 per treatment

arm; Canadian biomarker integration network in depression (CAN-BIND;
), aiming to recruit N = 290; and EMBARC study ( ) with N = 160.
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Box 1. Future directions

Obtaining clinically relevant features:

Larger samples would also help address another issue limiting generalizability: sample bias.
The reviewed studies varied in their inclusion criteria, both related to comorbidities (anxiety,
bipolar, substance use disorders, etc.) and MDD progression (drug-naive vs. treatment-resistant
vs. late-life depression). Larger samples with more inclusive criteria would be more represen-
tative of the broader MDD population, where comorbidities are common (Steffen, Nibel,
Jacobi, Batzing, & Holstiege, 2020).

CONCLUSION

Because of the heterogeneity in MDD presentation, etiology, and trajectory, the selection of an
appropriate treatment by clinicians is a challenging task. This review has detailed the emerging
use of computational models for individual treatment response prediction in MDD, highlight-
ing methodological differences along the data-driven and theory-driven spectrum. Although
both approaches have shown promising results, multiple challenges remain. Here we argued
that a promising research direction for improving interpretability and, potentially, the accuracy
of model predictions is theory-driven generative models, which allow for inference on disease
mechanisms. Furthermore, we identified several other methodological limitations related to
treatment outcome definition and validation of model predictions. The success of translating
these tools to clinical practice will depend on carefully designed external validation studies
with diverse patient samples and patient-centered outcome measures (see Box 1).

® Theory-driven generative models of brain activity and behavior can help extract more interpretable and more discriminative
features for treatment response prediction.

® A comprehensive model of the mechanisms underlying MDD symptomatology could be built using the hierarchical Bayesian

inference framework.

Differential treatment response over treatment response prediction:

® Including more than one and ideally several different treatments would allow for the prediction of differential treatment response,
which is clinically more useful than predicting response to a single treatment only.

Defining treatment outcomes:

® Predicting symptom improvement on a continuous scale, rather than dichotomized remission or response outcomes, can increase
statistical power and prediction accuracy.

® Predicting improvement in individual symptoms can help avoid confounds associated with the diverse symptom profiles of the
individuals diagnosed with MDD.

® Going beyond symptom reduction and including functional recovery and quality of life as relevant outcomes can help achieve
more patient-centered and thus more relevant predictions of treatment outcomes.

Validating computational models:

® To produce more reliable and generalizable results, more robust validation methods need to be employed. At the very least,
nested cross-validation should be used for internal model validation. To further improve generalization, external validation across

more than one site is needed.

® |arger sample sizes (N > 100) are essential for enabling such validation techniques and ensuring the representativeness of the

MDD population.

Network Neuroscience

1095

%20z AInF 92 uo 3senb Aq 4pd-g£Z00 B UIBU/99Z9502/9901/7/9/4pd-8l01ie/ujeu/npa W j08.Ip//:dny Woly papeojumoq



Treatment response prediction in major depression using brain activity

AUTHOR CONTRIBUTIONS

Povilas Karvelis: Conceptualization; Formal analysis; Investigation; Methodology; Visualiza-
tion; Writing — original draft; Writing — review & editing. Colleen E. Charlton: Conceptualiza-
tion; Formal analysis; Investigation; Methodology; Visualization; Writing — original draft;
Writing — review & editing. Shona G. Allohverdi: Conceptualization; Investigation; Writing —
original draft; Writing — review & editing. Peter Bedford: Conceptualization; Investigation;
Writing — review & editing. Daniel J. Hauke: Conceptualization; Investigation; Writing — review
& editing. Andreea Diaconescu: Conceptualization; Funding acquisition; Methodology; Project
administration; Supervision; Writing — review & editing.

FUNDING INFORMATION

Andreea Diaconescu, Krembil Foundation ( ),
Award ID: 1000824. Daniel J. Hauke, Schweizerischer Nationalfonds zur Forderung der

Wissenschaftlichen Forschung (

REFERENCES

Adams, R. A., Huys, Q. )., & Roiser, J. P. (2016). Computational psy-
chiatry: Towards a mathematically informed understanding of
mental illness. Journal of Neurology, Neurosurgery, and Psychia-
try, 87(1), 53-63. ,
PubMed:

Al-Kaysi, A. M., Al-Ani, A., Loo, C. K., Powell, T. Y., Martin, D. M.,
Breakspear, M., & Boonstra, T. W. (2017). Predicting tDCS treat-
ment outcomes of patients with major depressive disorder using
automated EEG classification. Journal of Affective Disorders, 208,
597-603. , PubMed:

Altman, D. G., & Royston, P. (2006). The cost of dichotomising
continuous variables. BMJ, 332(7549), 1080.
, PubMed:
American Psychiatric Association. (2013). Diagnostic and statistical
manual of mental disorders: DSM-5 (5th ed.). Arlington, VA:
American Psychiatric Publishing.

Austin, P. C., & Brunner, L. J. (2004). Inflation of the type i error rate
when a continuous confounding variable is categorized in logis-
tic regression analyses. Statistics in Medicine, 23(7), 1159-1178.

, PubMed:

Badcock, P. B., Davey, C. G., Whittle, S., Allen, N. B., & Friston,
K. J. (2017). The depressed brain: An evolutionary systems
theory. Trends in Cognitive Sciences, 21(3), 182-194.

, PubMed:

Bailey, N., Hoy, K., Rogasch, N., Thomson, R., McQueen, S., Elliot,
D., ... Fitzgerald, P. (2018). Responders to rTMS for depression
show increased fronto-midline theta and theta connectivity com-
pared to non-responders. Brain Stimulation, 11(1), 190-203.

, PubMed:

Bailey, N., Hoy, K., Rogasch, N., Thomson, R., McQueen, S., Elliot,
D., ... Fitzgerald, P. (2019). Differentiating responders and
non-responders to rTMS treatment for depression after one week
using resting EEG connectivity measures. Journal of Affective Dis-
orders, 242, 68-79. ,
PubMed:

Network Neuroscience

), Award ID: 200054.

Bailey, N. W., Krepel, N., van Dijk, H., Leuchter, A. F., Vila-
Rodriguez, F., Blumberger, D. M., ... Fitzgerald, P. B. (2021).
Resting EEG theta connectivity and alpha power to predict repet-
itive transcranial magnetic stimulation response in depression: A
non-replication from the ICON-DB consortium. Clinical Neuro-
physiology, 132(2), 650-659.

, PubMed:

Barrett, L. F., Quigley, K. S., & Hamilton, P. (2016). An active infer-
ence theory of allostasis and interoception in depression. Philo-
sophical Transactions of the Royal Society B: Biological Sciences,
371(1708), 20160011. ,
PubMed:

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P.,
& Friston, K. J. (2012). Canonical microcircuits for predictive
coding. Neuron, 76(4), 695-711.

, PubMed:

Botteron, K., Carter, C., Castellanos, F. X., Dickstein, D. P., Drevets,
W., Kim, K. L., ... Zubieta, J.-K. (2012). Consensus report of the
APA work group on neuroimaging markers of psychiatric disor-
ders. American Psychiatric Association.

Brandt, I. M., Kohler-Forsberg, K., Ganz, M., Ozenne, B., Jorgensen,
M. B., Poulsen, A., ... Fisher, P. M. (2021). Reward processing in
major depressive disorder and prediction of treatment response—
neuropharm study. European Neuropsychopharmacology, 44,
23-33. ,
PubMed:

Braund, T. A., Breukelaar, I. A., Griffiths, K., Tillman, G., Palmer,
D. M., Bryant, R., ... Korgaonkar, M. S. (2022). Intrinsic functional
connectomes characterize neuroticism in major depressive dis-
order and predict antidepressant treatment outcomes. Biological
Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(3),
276-284. , PubMed:

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Brodersen, K. H., Schofield, T. M., Leff, A. P., Ong, C. S., Lomakina,
E. I., Buhmann, J. M., & Stephan, K. E. (2011). Generative

1096

%20z AInF 92 uo 3senb Aq 4pd-g£Z00 B UIBU/99Z9502/9901/7/9/4pd-8l01ie/ujeu/npa W j08.Ip//:dny Woly papeojumoq


http://dx.doi.org/10.13039/501100004089
http://dx.doi.org/10.13039/501100004089
http://dx.doi.org/10.13039/501100004089
http://dx.doi.org/10.13039/501100004089
http://dx.doi.org/10.13039/501100004089
http://dx.doi.org/10.13039/501100004089
http://dx.doi.org/10.13039/501100004089
http://dx.doi.org/10.13039/501100004089
http://dx.doi.org/10.13039/501100001711
http://dx.doi.org/10.13039/501100001711
http://dx.doi.org/10.13039/501100001711
http://dx.doi.org/10.13039/501100001711
http://dx.doi.org/10.13039/501100001711
http://dx.doi.org/10.13039/501100001711
http://dx.doi.org/10.13039/501100001711
http://dx.doi.org/10.13039/501100001711
https://doi.org/10.1136/jnnp-2015-310737
https://doi.org/10.1136/jnnp-2015-310737
https://doi.org/10.1136/jnnp-2015-310737
https://doi.org/10.1136/jnnp-2015-310737
https://doi.org/10.1136/jnnp-2015-310737
https://doi.org/10.1136/jnnp-2015-310737
https://doi.org/10.1136/jnnp-2015-310737
https://doi.org/10.1136/jnnp-2015-310737
https://doi.org/10.1136/jnnp-2015-310737
https://pubmed.ncbi.nlm.nih.gov/26157034
https://doi.org/10.1016/j.jad.2016.10.021
https://doi.org/10.1016/j.jad.2016.10.021
https://doi.org/10.1016/j.jad.2016.10.021
https://doi.org/10.1016/j.jad.2016.10.021
https://doi.org/10.1016/j.jad.2016.10.021
https://doi.org/10.1016/j.jad.2016.10.021
https://doi.org/10.1016/j.jad.2016.10.021
https://doi.org/10.1016/j.jad.2016.10.021
https://doi.org/10.1016/j.jad.2016.10.021
https://doi.org/10.1016/j.jad.2016.10.021
https://doi.org/10.1016/j.jad.2016.10.021
https://pubmed.ncbi.nlm.nih.gov/28029427
https://doi.org/10.1136/bmj.332.7549.1080
https://doi.org/10.1136/bmj.332.7549.1080
https://doi.org/10.1136/bmj.332.7549.1080
https://doi.org/10.1136/bmj.332.7549.1080
https://doi.org/10.1136/bmj.332.7549.1080
https://doi.org/10.1136/bmj.332.7549.1080
https://doi.org/10.1136/bmj.332.7549.1080
https://doi.org/10.1136/bmj.332.7549.1080
https://doi.org/10.1136/bmj.332.7549.1080
https://doi.org/10.1136/bmj.332.7549.1080
https://doi.org/10.1136/bmj.332.7549.1080
https://pubmed.ncbi.nlm.nih.gov/16675816
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1002/sim.1687
https://doi.org/10.1002/sim.1687
https://doi.org/10.1002/sim.1687
https://doi.org/10.1002/sim.1687
https://doi.org/10.1002/sim.1687
https://doi.org/10.1002/sim.1687
https://doi.org/10.1002/sim.1687
https://doi.org/10.1002/sim.1687
https://pubmed.ncbi.nlm.nih.gov/15057884
https://doi.org/10.1016/j.tics.2017.01.005
https://doi.org/10.1016/j.tics.2017.01.005
https://doi.org/10.1016/j.tics.2017.01.005
https://doi.org/10.1016/j.tics.2017.01.005
https://doi.org/10.1016/j.tics.2017.01.005
https://doi.org/10.1016/j.tics.2017.01.005
https://doi.org/10.1016/j.tics.2017.01.005
https://doi.org/10.1016/j.tics.2017.01.005
https://doi.org/10.1016/j.tics.2017.01.005
https://doi.org/10.1016/j.tics.2017.01.005
https://doi.org/10.1016/j.tics.2017.01.005
https://doi.org/10.1016/j.tics.2017.01.005
https://pubmed.ncbi.nlm.nih.gov/28161288
https://doi.org/10.1016/j.brs.2017.10.015
https://doi.org/10.1016/j.brs.2017.10.015
https://doi.org/10.1016/j.brs.2017.10.015
https://doi.org/10.1016/j.brs.2017.10.015
https://doi.org/10.1016/j.brs.2017.10.015
https://doi.org/10.1016/j.brs.2017.10.015
https://doi.org/10.1016/j.brs.2017.10.015
https://doi.org/10.1016/j.brs.2017.10.015
https://doi.org/10.1016/j.brs.2017.10.015
https://doi.org/10.1016/j.brs.2017.10.015
https://doi.org/10.1016/j.brs.2017.10.015
https://pubmed.ncbi.nlm.nih.gov/29128490
https://doi.org/10.1016/j.jad.2018.08.058
https://doi.org/10.1016/j.jad.2018.08.058
https://doi.org/10.1016/j.jad.2018.08.058
https://doi.org/10.1016/j.jad.2018.08.058
https://doi.org/10.1016/j.jad.2018.08.058
https://doi.org/10.1016/j.jad.2018.08.058
https://doi.org/10.1016/j.jad.2018.08.058
https://doi.org/10.1016/j.jad.2018.08.058
https://doi.org/10.1016/j.jad.2018.08.058
https://doi.org/10.1016/j.jad.2018.08.058
https://doi.org/10.1016/j.jad.2018.08.058
https://pubmed.ncbi.nlm.nih.gov/30172227
https://doi.org/10.1016/j.clinph.2020.10.018
https://doi.org/10.1016/j.clinph.2020.10.018
https://doi.org/10.1016/j.clinph.2020.10.018
https://doi.org/10.1016/j.clinph.2020.10.018
https://doi.org/10.1016/j.clinph.2020.10.018
https://doi.org/10.1016/j.clinph.2020.10.018
https://doi.org/10.1016/j.clinph.2020.10.018
https://doi.org/10.1016/j.clinph.2020.10.018
https://doi.org/10.1016/j.clinph.2020.10.018
https://doi.org/10.1016/j.clinph.2020.10.018
https://doi.org/10.1016/j.clinph.2020.10.018
https://pubmed.ncbi.nlm.nih.gov/33223495
https://doi.org/10.1098/rstb.2016.0011
https://doi.org/10.1098/rstb.2016.0011
https://doi.org/10.1098/rstb.2016.0011
https://doi.org/10.1098/rstb.2016.0011
https://doi.org/10.1098/rstb.2016.0011
https://doi.org/10.1098/rstb.2016.0011
https://doi.org/10.1098/rstb.2016.0011
https://doi.org/10.1098/rstb.2016.0011
https://doi.org/10.1098/rstb.2016.0011
https://pubmed.ncbi.nlm.nih.gov/28080969
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.neuron.2012.10.038
https://pubmed.ncbi.nlm.nih.gov/23177956
https://doi.org/10.1016/j.euroneuro.2020.12.010
https://doi.org/10.1016/j.euroneuro.2020.12.010
https://doi.org/10.1016/j.euroneuro.2020.12.010
https://doi.org/10.1016/j.euroneuro.2020.12.010
https://doi.org/10.1016/j.euroneuro.2020.12.010
https://doi.org/10.1016/j.euroneuro.2020.12.010
https://doi.org/10.1016/j.euroneuro.2020.12.010
https://doi.org/10.1016/j.euroneuro.2020.12.010
https://doi.org/10.1016/j.euroneuro.2020.12.010
https://doi.org/10.1016/j.euroneuro.2020.12.010
https://doi.org/10.1016/j.euroneuro.2020.12.010
https://pubmed.ncbi.nlm.nih.gov/33455816
https://doi.org/10.1016/j.bpsc.2021.07.010
https://doi.org/10.1016/j.bpsc.2021.07.010
https://doi.org/10.1016/j.bpsc.2021.07.010
https://doi.org/10.1016/j.bpsc.2021.07.010
https://doi.org/10.1016/j.bpsc.2021.07.010
https://doi.org/10.1016/j.bpsc.2021.07.010
https://doi.org/10.1016/j.bpsc.2021.07.010
https://doi.org/10.1016/j.bpsc.2021.07.010
https://doi.org/10.1016/j.bpsc.2021.07.010
https://doi.org/10.1016/j.bpsc.2021.07.010
https://doi.org/10.1016/j.bpsc.2021.07.010
https://pubmed.ncbi.nlm.nih.gov/34363999
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324

Treatment response prediction in major depression using brain

activity

embedding for model-based classification of fMRI data. PLoS
Computational Biology, 7(6), e1002079.
, PubMed:

Cash, R. F., Cocchi, L., Anderson, R., Rogachov, A., Kucyi, A.,
Barnett, A. J., ... Fitzgerald, P. B. (2019). A multivariate neuro-
imaging biomarker of individual outcome to transcranial mag-
netic stimulation in depression. Human Brain Mapping, 40(16),
4618-4629. , PubMed:

Castro-Schilo, L., & Grimm, K. J. (2018). Using residualized change
versus difference scores for longitudinal research. Journal of
Social and Personal Relationships, 35(1), 32-58.

Chahal, R., Gotlib, I. H., & Guyer, A. E. (2020). Research review:
Brain network connectivity and the heterogeneity of depression
in adolescence—A precision mental health perspective. Journal
of Child Psychology and Psychiatry, 61(12), 1282-1298.

, PubMed:

Chekroud, A. M. (2015). Unifying treatments for depression: An
application of the free energy principle. Frontiers in Psychology,
6, 153. , PubMed:

Chen, C., Takahashi, T., Nakagawa, S., Inoue, T., & Kusumi, I.
(2015). Reinforcement learning in depression: A review of com-
putational research. Neuroscience and Biobehavioral Reviews,
55, 247-267. ,
PubMed:

Chin Fatt, C. R., Jha, M. K., Cooper, C. M., Fonzo, G., South, C.,
Grannemann, B., ... Trivedi, M. H. (2020). Effect of intrinsic
patterns of functional brain connectivity in moderating antide-
pressant treatment response in major depression. American
Journal of Psychiatry, 177(2), 143-154.

, PubMed:

Cook, I. A., Hunter, A. M., Caudill, M. M., Abrams, M. J., & Leuchter,
A. F. (2020). Prospective testing of a neurophysiologic biomarker
for treatment decisions in major depressive disorder: The
PRISE-MD trial. Journal of Psychiatric Research, 124, 159-165.

, PubMed:

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine
Learning, 20(3), 273-297.

Costafreda, S. G., Khanna, A., Mourao-Miranda, J., & Fu, C. H.
(2009). Neural correlates of sad faces predict clinical remission to
cognitive behavioural therapy in depression. Neuroreport, 20(7),
637-641. ,
PubMed:

Crane, N. A,, Jenkins, L. M., Bhaumik, R., Dion, C., Gowins, J. R,
Mickey, B. J., ... Langenecker, S. A. (2017). Multidimensional pre-
diction of treatment response to antidepressants with cognitive
control and functional MRI. Brain, 140(2), 472-486.

, PubMed:

Dichter, G. S., Gibbs, D., & Smoski, M. J. (2015). A systematic
review of relations between resting-state functional-MRI and
treatment response in major depressive disorder. Journal of Affec-
tive Disorders, 172, 8-17.

, PubMed:

Dinga, R., Schmaal, L., Penninx, B. W., van Tol, M. J., Veltman,

D. J., van Velzen, L., ... Marquand, A. F. (2019). Evaluating the

Network Neuroscience

evidence for biotypes of depression: Methodological replication
and extension of Drysdale et al. (2017). Neurolmage: Clinical,
22, 101796. ,
PubMed:

Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F.,
Meng, Y., ... Liston, C. (2017). Resting-state connectivity bio-
markers define neurophysiological subtypes of depression.
Nature Medicine, 23(1), 28-38.

, PubMed:

Dunlop, B. W., & Mayberg, H. S. (2014). Neuroimaging-based
biomarkers for treatment selection in major depressive disorder.
Dialogues in Clinical Neuroscience, 16(4), 479-490.

, PubMed:

Endicott, J., Nee, J., Harrison, W., & Blumenthal, R. (1993). Quality of
life enjoyment and satisfaction questionnaire: A new measure.
Psychopharmacology Bulletin, 29(2), 321-326. PubMed:

Erguzel, T. T., Ozekes, S., Gultekin, S., Tarhan, N., Sayar, G. H., &
Bayram, A. (2015). Neural network based response prediction of
rTMS in major depressive disorder using QEEG cordance. Psychi-
atry Investigation, 12(1), 61-65.

, PubMed:

Eshel, N., & Roiser, ). P. (2010). Reward and punishment processing

in depression. Biological Psychiatry, 68(2), 118-124.
, PubMed:

Fan, S., Nemati, S., Akiki, T.]., Roscoe, J., Averill, C. L., Fouda, S., ...
Abdallah, C. G. (2020). Pretreatment brain connectome finger-
print predicts treatment response in major depressive disorder.
Chronic Stress, 4, 2470547020984726.

, PubMed:

Farmus, L., Arpin-Cribbie, C. A., & Cribbie, R. A. (2019). Continu-
ous predictors of pretest-posttest change: Highlighting the impact
of the regression artifact. Frontiers in Applied Mathematics and
Statistics, 4, 64.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical
processing in the primate cerebral cortex. Cerebral Cortex, 1(1),
1-47. , PubMed:

Finn, E. S. (2021). Is it time to put rest to rest? Trends in Cognitive
Sciences, 25(12), 1021-1032.

, PubMed:

Fischer, A. S., Holt-Gosselin, B., Fleming, S. L., Hack, L. M., Ball,
T. M., Schatzberg, A. F., & Williams, L. M. (2021). Intrinsic
reward circuit connectivity profiles underlying symptom and
quality of life outcomes following antidepressant medication: A
report from the iISPOT-D trial. Neuropsychopharmacology, 46(4),
809-819. ,
PubMed:

Fonseka, T. M., MacQueen, G. M., & Kennedy, S. H. (2018). Neu-
roimaging biomarkers as predictors of treatment outcome in
major depressive disorder. Journal of Affective Disorders, 233,
21-35. , PubMed:

Fonzo, G. A., Etkin, A., Zhang, Y., Wu, W., Cooper, C., Chin-Fatt,
C., ... Trivedi, M. H. (2019). Brain regulation of emotional con-
flict predicts antidepressant treatment response for depression.
Nature Human Behaviour, 3(12), 1319-1331.

, PubMed:

Fried, E. (2017). Moving forward: How depression heterogeneity

hinders progress in treatment and research. Expert Review of

1097

%20z AInF 92 uo 3senb Aq 4pd-g£Z00 B UIBU/99Z9502/9901/7/9/4pd-8l01ie/ujeu/npa W j08.Ip//:dny Woly papeojumoq


https://doi.org/10.1371/journal.pcbi.1002079
https://doi.org/10.1371/journal.pcbi.1002079
https://doi.org/10.1371/journal.pcbi.1002079
https://doi.org/10.1371/journal.pcbi.1002079
https://doi.org/10.1371/journal.pcbi.1002079
https://doi.org/10.1371/journal.pcbi.1002079
https://doi.org/10.1371/journal.pcbi.1002079
https://doi.org/10.1371/journal.pcbi.1002079
https://doi.org/10.1371/journal.pcbi.1002079
https://pubmed.ncbi.nlm.nih.gov/21731479
https://doi.org/10.1002/hbm.24725
https://doi.org/10.1002/hbm.24725
https://doi.org/10.1002/hbm.24725
https://doi.org/10.1002/hbm.24725
https://doi.org/10.1002/hbm.24725
https://doi.org/10.1002/hbm.24725
https://doi.org/10.1002/hbm.24725
https://doi.org/10.1002/hbm.24725
https://doi.org/10.1002/hbm.24725
https://pubmed.ncbi.nlm.nih.gov/31332903
https://doi.org/10.1177/0265407517718387
https://doi.org/10.1177/0265407517718387
https://doi.org/10.1177/0265407517718387
https://doi.org/10.1177/0265407517718387
https://doi.org/10.1177/0265407517718387
https://doi.org/10.1177/0265407517718387
https://doi.org/10.1177/0265407517718387
https://doi.org/10.1111/jcpp.13250
https://doi.org/10.1111/jcpp.13250
https://doi.org/10.1111/jcpp.13250
https://doi.org/10.1111/jcpp.13250
https://doi.org/10.1111/jcpp.13250
https://doi.org/10.1111/jcpp.13250
https://doi.org/10.1111/jcpp.13250
https://doi.org/10.1111/jcpp.13250
https://doi.org/10.1111/jcpp.13250
https://pubmed.ncbi.nlm.nih.gov/32458453
https://doi.org/10.3389/fpsyg.2015.00153
https://doi.org/10.3389/fpsyg.2015.00153
https://doi.org/10.3389/fpsyg.2015.00153
https://doi.org/10.3389/fpsyg.2015.00153
https://doi.org/10.3389/fpsyg.2015.00153
https://doi.org/10.3389/fpsyg.2015.00153
https://doi.org/10.3389/fpsyg.2015.00153
https://doi.org/10.3389/fpsyg.2015.00153
https://doi.org/10.3389/fpsyg.2015.00153
https://pubmed.ncbi.nlm.nih.gov/25750630
https://doi.org/10.1016/j.neubiorev.2015.05.005
https://doi.org/10.1016/j.neubiorev.2015.05.005
https://doi.org/10.1016/j.neubiorev.2015.05.005
https://doi.org/10.1016/j.neubiorev.2015.05.005
https://doi.org/10.1016/j.neubiorev.2015.05.005
https://doi.org/10.1016/j.neubiorev.2015.05.005
https://doi.org/10.1016/j.neubiorev.2015.05.005
https://doi.org/10.1016/j.neubiorev.2015.05.005
https://doi.org/10.1016/j.neubiorev.2015.05.005
https://doi.org/10.1016/j.neubiorev.2015.05.005
https://doi.org/10.1016/j.neubiorev.2015.05.005
https://pubmed.ncbi.nlm.nih.gov/25979140
https://doi.org/10.1176/appi.ajp.2019.18070870
https://doi.org/10.1176/appi.ajp.2019.18070870
https://doi.org/10.1176/appi.ajp.2019.18070870
https://doi.org/10.1176/appi.ajp.2019.18070870
https://doi.org/10.1176/appi.ajp.2019.18070870
https://doi.org/10.1176/appi.ajp.2019.18070870
https://doi.org/10.1176/appi.ajp.2019.18070870
https://doi.org/10.1176/appi.ajp.2019.18070870
https://doi.org/10.1176/appi.ajp.2019.18070870
https://doi.org/10.1176/appi.ajp.2019.18070870
https://pubmed.ncbi.nlm.nih.gov/31537090
https://doi.org/10.1016/j.jpsychires.2020.02.028
https://doi.org/10.1016/j.jpsychires.2020.02.028
https://doi.org/10.1016/j.jpsychires.2020.02.028
https://doi.org/10.1016/j.jpsychires.2020.02.028
https://doi.org/10.1016/j.jpsychires.2020.02.028
https://doi.org/10.1016/j.jpsychires.2020.02.028
https://doi.org/10.1016/j.jpsychires.2020.02.028
https://doi.org/10.1016/j.jpsychires.2020.02.028
https://doi.org/10.1016/j.jpsychires.2020.02.028
https://doi.org/10.1016/j.jpsychires.2020.02.028
https://doi.org/10.1016/j.jpsychires.2020.02.028
https://pubmed.ncbi.nlm.nih.gov/32169689
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1097/WNR.0b013e3283294159
https://doi.org/10.1097/WNR.0b013e3283294159
https://doi.org/10.1097/WNR.0b013e3283294159
https://doi.org/10.1097/WNR.0b013e3283294159
https://doi.org/10.1097/WNR.0b013e3283294159
https://doi.org/10.1097/WNR.0b013e3283294159
https://doi.org/10.1097/WNR.0b013e3283294159
https://doi.org/10.1097/WNR.0b013e3283294159
https://doi.org/10.1097/WNR.0b013e3283294159
https://pubmed.ncbi.nlm.nih.gov/19339907
https://doi.org/10.1093/brain/aww326
https://doi.org/10.1093/brain/aww326
https://doi.org/10.1093/brain/aww326
https://doi.org/10.1093/brain/aww326
https://doi.org/10.1093/brain/aww326
https://doi.org/10.1093/brain/aww326
https://doi.org/10.1093/brain/aww326
https://doi.org/10.1093/brain/aww326
https://doi.org/10.1093/brain/aww326
https://pubmed.ncbi.nlm.nih.gov/28122876
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1016/j.jad.2014.09.028
https://pubmed.ncbi.nlm.nih.gov/25451389
https://doi.org/10.1016/j.nicl.2019.101796
https://doi.org/10.1016/j.nicl.2019.101796
https://doi.org/10.1016/j.nicl.2019.101796
https://doi.org/10.1016/j.nicl.2019.101796
https://doi.org/10.1016/j.nicl.2019.101796
https://doi.org/10.1016/j.nicl.2019.101796
https://doi.org/10.1016/j.nicl.2019.101796
https://doi.org/10.1016/j.nicl.2019.101796
https://doi.org/10.1016/j.nicl.2019.101796
https://doi.org/10.1016/j.nicl.2019.101796
https://pubmed.ncbi.nlm.nih.gov/30935858
https://doi.org/10.1038/nm.4246
https://doi.org/10.1038/nm.4246
https://doi.org/10.1038/nm.4246
https://doi.org/10.1038/nm.4246
https://doi.org/10.1038/nm.4246
https://doi.org/10.1038/nm.4246
https://doi.org/10.1038/nm.4246
https://doi.org/10.1038/nm.4246
https://pubmed.ncbi.nlm.nih.gov/27918562
https://doi.org/10.31887/DCNS.2014.16.4/bdunlop
https://doi.org/10.31887/DCNS.2014.16.4/bdunlop
https://doi.org/10.31887/DCNS.2014.16.4/bdunlop
https://doi.org/10.31887/DCNS.2014.16.4/bdunlop
https://doi.org/10.31887/DCNS.2014.16.4/bdunlop
https://doi.org/10.31887/DCNS.2014.16.4/bdunlop
https://doi.org/10.31887/DCNS.2014.16.4/bdunlop
https://doi.org/10.31887/DCNS.2014.16.4/bdunlop
https://doi.org/10.31887/DCNS.2014.16.4/bdunlop
https://doi.org/10.31887/DCNS.2014.16.4/bdunlop
https://doi.org/10.31887/DCNS.2014.16.4/bdunlop
https://doi.org/10.31887/DCNS.2014.16.4/bdunlop
https://doi.org/10.31887/DCNS.2014.16.4/bdunlop
https://pubmed.ncbi.nlm.nih.gov/25733953
https://pubmed.ncbi.nlm.nih.gov/8290681
https://doi.org/10.4306/pi.2015.12.1.61
https://doi.org/10.4306/pi.2015.12.1.61
https://doi.org/10.4306/pi.2015.12.1.61
https://doi.org/10.4306/pi.2015.12.1.61
https://doi.org/10.4306/pi.2015.12.1.61
https://doi.org/10.4306/pi.2015.12.1.61
https://doi.org/10.4306/pi.2015.12.1.61
https://doi.org/10.4306/pi.2015.12.1.61
https://doi.org/10.4306/pi.2015.12.1.61
https://doi.org/10.4306/pi.2015.12.1.61
https://doi.org/10.4306/pi.2015.12.1.61
https://pubmed.ncbi.nlm.nih.gov/25670947
https://doi.org/10.1016/j.biopsych.2010.01.027
https://doi.org/10.1016/j.biopsych.2010.01.027
https://doi.org/10.1016/j.biopsych.2010.01.027
https://doi.org/10.1016/j.biopsych.2010.01.027
https://doi.org/10.1016/j.biopsych.2010.01.027
https://doi.org/10.1016/j.biopsych.2010.01.027
https://doi.org/10.1016/j.biopsych.2010.01.027
https://doi.org/10.1016/j.biopsych.2010.01.027
https://doi.org/10.1016/j.biopsych.2010.01.027
https://doi.org/10.1016/j.biopsych.2010.01.027
https://doi.org/10.1016/j.biopsych.2010.01.027
https://pubmed.ncbi.nlm.nih.gov/20303067
https://doi.org/10.1177/2470547020984726
https://doi.org/10.1177/2470547020984726
https://doi.org/10.1177/2470547020984726
https://doi.org/10.1177/2470547020984726
https://doi.org/10.1177/2470547020984726
https://doi.org/10.1177/2470547020984726
https://doi.org/10.1177/2470547020984726
https://pubmed.ncbi.nlm.nih.gov/33458556
https://doi.org/10.3389/fams.2018.00064
https://doi.org/10.3389/fams.2018.00064
https://doi.org/10.3389/fams.2018.00064
https://doi.org/10.3389/fams.2018.00064
https://doi.org/10.3389/fams.2018.00064
https://doi.org/10.3389/fams.2018.00064
https://doi.org/10.3389/fams.2018.00064
https://doi.org/10.3389/fams.2018.00064
https://doi.org/10.3389/fams.2018.00064
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1093/cercor/1.1.1
https://pubmed.ncbi.nlm.nih.gov/1822724
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://pubmed.ncbi.nlm.nih.gov/34625348
https://doi.org/10.1038/s41386-020-00905-3
https://doi.org/10.1038/s41386-020-00905-3
https://doi.org/10.1038/s41386-020-00905-3
https://doi.org/10.1038/s41386-020-00905-3
https://doi.org/10.1038/s41386-020-00905-3
https://doi.org/10.1038/s41386-020-00905-3
https://doi.org/10.1038/s41386-020-00905-3
https://doi.org/10.1038/s41386-020-00905-3
https://doi.org/10.1038/s41386-020-00905-3
https://doi.org/10.1038/s41386-020-00905-3
https://pubmed.ncbi.nlm.nih.gov/33230268
https://doi.org/10.1016/j.jad.2017.10.049
https://doi.org/10.1016/j.jad.2017.10.049
https://doi.org/10.1016/j.jad.2017.10.049
https://doi.org/10.1016/j.jad.2017.10.049
https://doi.org/10.1016/j.jad.2017.10.049
https://doi.org/10.1016/j.jad.2017.10.049
https://doi.org/10.1016/j.jad.2017.10.049
https://doi.org/10.1016/j.jad.2017.10.049
https://doi.org/10.1016/j.jad.2017.10.049
https://doi.org/10.1016/j.jad.2017.10.049
https://doi.org/10.1016/j.jad.2017.10.049
https://pubmed.ncbi.nlm.nih.gov/29150145
https://doi.org/10.1038/s41562-019-0732-1
https://doi.org/10.1038/s41562-019-0732-1
https://doi.org/10.1038/s41562-019-0732-1
https://doi.org/10.1038/s41562-019-0732-1
https://doi.org/10.1038/s41562-019-0732-1
https://doi.org/10.1038/s41562-019-0732-1
https://doi.org/10.1038/s41562-019-0732-1
https://doi.org/10.1038/s41562-019-0732-1
https://doi.org/10.1038/s41562-019-0732-1
https://doi.org/10.1038/s41562-019-0732-1
https://pubmed.ncbi.nlm.nih.gov/31548678

Treatment response prediction in major depression using brain activity

Neurotherapeutics, 17(5), 423-425.
, PubMed:

Fried, E. I. (2017). The 52 symptoms of major depression: Lack of
content overlap among seven common depression scales. Jour-
nal of Affective Disorders, 208, 191-197.

, PubMed:

Fried, E. I., Nesse, R. M., Zivin, K., Guille, C., & Sen, S. (2014).
Depression is more than the sum score of its parts: Individual
DSM symptoms have different risk factors. Psychological Medli-
cine, 44(10), 2067-2076.

, PubMed:

Frisch, M. B., Clark, M. P., Rouse, S. V., Rudd, M. D., Paweleck,
J. K., Greenstone, A., & Kopplin, D. A. (2005). Predictive and
treatment validity of life satisfaction and the quality of life inven-
tory. Assessment, 12(1), 66-78.

, PubMed:

Friston, K. J. (2011). Functional and effective connectivity: A

review. Brain Connectivity, 1(1), 13-36.
, PubMed:

Friston, K. J., Preller, K. H., Mathys, C., Cagnan, H., Heinzle, J.,
Razi, A., & Zeidman, P. (2019). Dynamic causal modelling revis-
ited. Neurolmage, 199, 730-744.

, PubMed:

Frassle, S., Marquand, A. F., Schmaal, L., Dinga, R., Veltman, D. J.,
van der Wee, N. J., ... Stephan, K. E. (2020). Predicting individual
clinical trajectories of depression with generative embedding.
Neurolmage: Clinical, 26, 102213.

, PubMed:

Frassle, S., Yao, Y., Schobi, D., Aponte, E. A., Heinzle, J., & Stephan,
K. E. (2018). Generative models for clinical applications in com-
putational psychiatry. Wiley Interdisciplinary Reviews: Cognitive
Science, 9(3), e1460. ,
PubMed:

Fu, C. H., Mourao-Miranda, J., Costafreda, S. G., Khanna, A.,
Marquand, A. F., Williams, S. C., & Brammer, M. J. (2008).
Pattern classification of sad facial processing: Toward the devel-
opment of neurobiological markers in depression. Biological
Psychiatry, 63(7), 656-662.

, PubMed:

Gilbert, J. R., Symmonds, M., Hanna, M. G., Dolan, R. J., Friston,
K. J., & Moran, R. J. (2016). Profiling neuronal ion channelopa-
thies with non-invasive brain imaging and dynamic causal
models: Case studies of single gene mutations. Neurolmage,
124, 43-53. ,
PubMed:

Gillan, C. M., & Whelan, R. (2017). What big data can do for
treatment in psychiatry. Current Opinion in Behavioral Sciences,
18, 34-42.

Glascher, J., Daw, N., Dayan, P., & O’Doherty, J. P. (2010). States
versus rewards: Dissociable neural prediction error signals
underlying model-based and model-free reinforcement learning.
Neuron, 66(4), 585-595.

, PubMed:

Godlewska, B. R., Browning, M., Norbury, R., Igoumenou, A., Cowen,
P. J., & Harmer, C. J. (2018). Predicting treatment response in
depression: The role of anterior cingulate cortex. International
Journal of Neuropsychopharmacology, 21(11), 988-996.

, PubMed:

Network Neuroscience

Goldberg, D. (2011). The heterogeneity of “major depression.”

World Psychiatry, 10(3), 226-228.
, PubMed:

Goldstein-Piekarski, A. N., Korgaonkar, M. S., Green, E., Suppes, T.,
Schatzberg, A. F., Hastie, T., ... Williams, L. M. (2016). Human
amygdala engagement moderated by early life stress exposure is
a biobehavioral target for predicting recovery on antidepressants.
Proceedings of the National Academy of Sciences, 113(42),
11955-11960. )
PubMed:

Goldstein-Piekarski, A. N., Staveland, B. R., Ball, T. M., Yesavage,
J., Korgaonkar, M. S., & Williams, L. M. (2018). Intrinsic func-
tional connectivity predicts remission on antidepressants: A ran-
domized controlled trial to identify clinically applicable imaging
biomarkers. Translational Psychiatry, 8(1), 1-11.

, PubMed:

Greer, T. L., Kurian, B. T., & Trivedi, M. H. (2010). Defining and
measuring functional recovery from depression. CNS Drugs, 24(4),
267-284. )
PubMed:

Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason,
H. B., Kenna, H., ... Schatzberg, A. F. (2007). Resting-state func-
tional connectivity in major depression: Abnormally increased
contributions from subgenual cingulate cortex and thalamus.
Biological Psychiatry, 62(5), 429-437.

, PubMed:

Habert, J., Katzman, M. A., Oluboka, O. J., McIntyre, R., McIntosh,
D., MacQueen, G., & Kennedy, S. (2016). Functional recovery in
major depressive disorder. Primary Care Companion for CNS Dis-
orders, 18(5). , PubMed:

Hamilton, M. (1967). Development of a rating scale for primary
depressive illness. British Journal of Social and Clinical Psychol-
ogy, 6(4), 278-296.

, PubMed:

Han, K.-M., Ham, B.-J., & Kim, Y.-K. (2021). Development of
neuroimaging-based biomarkers in major depression. Advances
in Experimental Medicine and Biology, 1305, 85-99.

, PubMed:

Hasanzadeh, F., Mohebbi, M., & Rostami, R. (2019). Prediction of
rTMS treatment response in major depressive disorder using
machine learning techniques and nonlinear features of EEG sig-
nal. Journal of Affective Disorders, 256, 132-142.

, PubMed:

Hofmann, S. G., Curtiss, J., Carpenter, J. K., & Kind, S. (2017). Effect
of treatments for depression on quality of life: A meta-analysis.
Cognitive Behaviour Therapy, 46(4), 265-286.

, PubMed:

Hopman, H., Chan, S., Chu, W., Lu, H., Tse, C.-Y., Chau, S., ...
Neggers, S. (2021). Personalized prediction of transcranial
magnetic stimulation clinical response in patients with treatment-
refractory depression using neuroimaging biomarkers and machine
learning. Journal of Affective Disorders, 290, 261-271.

, PubMed:

Hough, C. M., Bersani, F. S., Mellon, S. H., Morford, A. E., Lindqvist,
D.,Reus, V. 1.,... Wolkowitz, O. M. (2021). Pre-treatment allostatic
load and metabolic dysregulation predict SSRI response in major
depressive disorder: A preliminary report. Psychological

1098

%20z AInF 92 uo 3senb Aq 4pd-g£Z00 B UIBU/99Z9502/9901/7/9/4pd-8l01ie/ujeu/npa W j08.Ip//:dny Woly papeojumoq


https://doi.org/10.1080/14737175.2017.1307737
https://doi.org/10.1080/14737175.2017.1307737
https://doi.org/10.1080/14737175.2017.1307737
https://doi.org/10.1080/14737175.2017.1307737
https://doi.org/10.1080/14737175.2017.1307737
https://doi.org/10.1080/14737175.2017.1307737
https://doi.org/10.1080/14737175.2017.1307737
https://doi.org/10.1080/14737175.2017.1307737
https://doi.org/10.1080/14737175.2017.1307737
https://pubmed.ncbi.nlm.nih.gov/28293960
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1016/j.jad.2016.10.019
https://pubmed.ncbi.nlm.nih.gov/27792962
https://doi.org/10.1017/S0033291713002900
https://doi.org/10.1017/S0033291713002900
https://doi.org/10.1017/S0033291713002900
https://doi.org/10.1017/S0033291713002900
https://doi.org/10.1017/S0033291713002900
https://doi.org/10.1017/S0033291713002900
https://doi.org/10.1017/S0033291713002900
https://pubmed.ncbi.nlm.nih.gov/24289852
https://doi.org/10.1177/1073191104268006
https://doi.org/10.1177/1073191104268006
https://doi.org/10.1177/1073191104268006
https://doi.org/10.1177/1073191104268006
https://doi.org/10.1177/1073191104268006
https://doi.org/10.1177/1073191104268006
https://doi.org/10.1177/1073191104268006
https://pubmed.ncbi.nlm.nih.gov/15695744
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1089/brain.2011.0008
https://pubmed.ncbi.nlm.nih.gov/22432952
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://pubmed.ncbi.nlm.nih.gov/28219774
https://doi.org/10.1016/j.nicl.2020.102213
https://doi.org/10.1016/j.nicl.2020.102213
https://doi.org/10.1016/j.nicl.2020.102213
https://doi.org/10.1016/j.nicl.2020.102213
https://doi.org/10.1016/j.nicl.2020.102213
https://doi.org/10.1016/j.nicl.2020.102213
https://doi.org/10.1016/j.nicl.2020.102213
https://doi.org/10.1016/j.nicl.2020.102213
https://doi.org/10.1016/j.nicl.2020.102213
https://doi.org/10.1016/j.nicl.2020.102213
https://pubmed.ncbi.nlm.nih.gov/32197140
https://doi.org/10.1002/wcs.1460
https://doi.org/10.1002/wcs.1460
https://doi.org/10.1002/wcs.1460
https://doi.org/10.1002/wcs.1460
https://doi.org/10.1002/wcs.1460
https://doi.org/10.1002/wcs.1460
https://doi.org/10.1002/wcs.1460
https://doi.org/10.1002/wcs.1460
https://pubmed.ncbi.nlm.nih.gov/29369526
https://doi.org/10.1016/j.biopsych.2007.08.020
https://doi.org/10.1016/j.biopsych.2007.08.020
https://doi.org/10.1016/j.biopsych.2007.08.020
https://doi.org/10.1016/j.biopsych.2007.08.020
https://doi.org/10.1016/j.biopsych.2007.08.020
https://doi.org/10.1016/j.biopsych.2007.08.020
https://doi.org/10.1016/j.biopsych.2007.08.020
https://doi.org/10.1016/j.biopsych.2007.08.020
https://doi.org/10.1016/j.biopsych.2007.08.020
https://doi.org/10.1016/j.biopsych.2007.08.020
https://doi.org/10.1016/j.biopsych.2007.08.020
https://pubmed.ncbi.nlm.nih.gov/17949689
https://doi.org/10.1016/j.neuroimage.2015.08.057
https://doi.org/10.1016/j.neuroimage.2015.08.057
https://doi.org/10.1016/j.neuroimage.2015.08.057
https://doi.org/10.1016/j.neuroimage.2015.08.057
https://doi.org/10.1016/j.neuroimage.2015.08.057
https://doi.org/10.1016/j.neuroimage.2015.08.057
https://doi.org/10.1016/j.neuroimage.2015.08.057
https://doi.org/10.1016/j.neuroimage.2015.08.057
https://doi.org/10.1016/j.neuroimage.2015.08.057
https://doi.org/10.1016/j.neuroimage.2015.08.057
https://doi.org/10.1016/j.neuroimage.2015.08.057
https://pubmed.ncbi.nlm.nih.gov/26342528
https://doi.org/10.1016/j.cobeha.2017.07.003
https://doi.org/10.1016/j.cobeha.2017.07.003
https://doi.org/10.1016/j.cobeha.2017.07.003
https://doi.org/10.1016/j.cobeha.2017.07.003
https://doi.org/10.1016/j.cobeha.2017.07.003
https://doi.org/10.1016/j.cobeha.2017.07.003
https://doi.org/10.1016/j.cobeha.2017.07.003
https://doi.org/10.1016/j.cobeha.2017.07.003
https://doi.org/10.1016/j.cobeha.2017.07.003
https://doi.org/10.1016/j.cobeha.2017.07.003
https://doi.org/10.1016/j.cobeha.2017.07.003
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
https://pubmed.ncbi.nlm.nih.gov/20510862
https://doi.org/10.1093/ijnp/pyy069
https://doi.org/10.1093/ijnp/pyy069
https://doi.org/10.1093/ijnp/pyy069
https://doi.org/10.1093/ijnp/pyy069
https://doi.org/10.1093/ijnp/pyy069
https://doi.org/10.1093/ijnp/pyy069
https://doi.org/10.1093/ijnp/pyy069
https://doi.org/10.1093/ijnp/pyy069
https://doi.org/10.1093/ijnp/pyy069
https://pubmed.ncbi.nlm.nih.gov/30124867
https://doi.org/10.1002/j.2051-5545.2011.tb00061.x
https://doi.org/10.1002/j.2051-5545.2011.tb00061.x
https://doi.org/10.1002/j.2051-5545.2011.tb00061.x
https://doi.org/10.1002/j.2051-5545.2011.tb00061.x
https://doi.org/10.1002/j.2051-5545.2011.tb00061.x
https://doi.org/10.1002/j.2051-5545.2011.tb00061.x
https://doi.org/10.1002/j.2051-5545.2011.tb00061.x
https://doi.org/10.1002/j.2051-5545.2011.tb00061.x
https://doi.org/10.1002/j.2051-5545.2011.tb00061.x
https://doi.org/10.1002/j.2051-5545.2011.tb00061.x
https://doi.org/10.1002/j.2051-5545.2011.tb00061.x
https://doi.org/10.1002/j.2051-5545.2011.tb00061.x
https://pubmed.ncbi.nlm.nih.gov/21991283
https://doi.org/10.1073/pnas.1606671113
https://doi.org/10.1073/pnas.1606671113
https://doi.org/10.1073/pnas.1606671113
https://doi.org/10.1073/pnas.1606671113
https://doi.org/10.1073/pnas.1606671113
https://doi.org/10.1073/pnas.1606671113
https://doi.org/10.1073/pnas.1606671113
https://doi.org/10.1073/pnas.1606671113
https://pubmed.ncbi.nlm.nih.gov/27791054
https://doi.org/10.1038/s41398-018-0100-3
https://doi.org/10.1038/s41398-018-0100-3
https://doi.org/10.1038/s41398-018-0100-3
https://doi.org/10.1038/s41398-018-0100-3
https://doi.org/10.1038/s41398-018-0100-3
https://doi.org/10.1038/s41398-018-0100-3
https://doi.org/10.1038/s41398-018-0100-3
https://doi.org/10.1038/s41398-018-0100-3
https://doi.org/10.1038/s41398-018-0100-3
https://doi.org/10.1038/s41398-018-0100-3
https://pubmed.ncbi.nlm.nih.gov/29507282
https://doi.org/10.2165/11530230-000000000-00000
https://doi.org/10.2165/11530230-000000000-00000
https://doi.org/10.2165/11530230-000000000-00000
https://doi.org/10.2165/11530230-000000000-00000
https://doi.org/10.2165/11530230-000000000-00000
https://doi.org/10.2165/11530230-000000000-00000
https://doi.org/10.2165/11530230-000000000-00000
https://doi.org/10.2165/11530230-000000000-00000
https://doi.org/10.2165/11530230-000000000-00000
https://pubmed.ncbi.nlm.nih.gov/20297853
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1016/j.biopsych.2006.09.020
https://pubmed.ncbi.nlm.nih.gov/17210143
https://doi.org/10.4088/PCC.15r01926
https://doi.org/10.4088/PCC.15r01926
https://doi.org/10.4088/PCC.15r01926
https://doi.org/10.4088/PCC.15r01926
https://doi.org/10.4088/PCC.15r01926
https://doi.org/10.4088/PCC.15r01926
https://doi.org/10.4088/PCC.15r01926
https://doi.org/10.4088/PCC.15r01926
https://doi.org/10.4088/PCC.15r01926
https://pubmed.ncbi.nlm.nih.gov/27835721
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
https://pubmed.ncbi.nlm.nih.gov/6080235
https://doi.org/10.1007/978-981-33-6044-0_6
https://doi.org/10.1007/978-981-33-6044-0_6
https://doi.org/10.1007/978-981-33-6044-0_6
https://doi.org/10.1007/978-981-33-6044-0_6
https://doi.org/10.1007/978-981-33-6044-0_6
https://doi.org/10.1007/978-981-33-6044-0_6
https://doi.org/10.1007/978-981-33-6044-0_6
https://doi.org/10.1007/978-981-33-6044-0_6
https://doi.org/10.1007/978-981-33-6044-0_6
https://doi.org/10.1007/978-981-33-6044-0_6
https://doi.org/10.1007/978-981-33-6044-0_6
https://doi.org/10.1007/978-981-33-6044-0_6
https://pubmed.ncbi.nlm.nih.gov/33834396
https://doi.org/10.1016/j.jad.2019.05.070
https://doi.org/10.1016/j.jad.2019.05.070
https://doi.org/10.1016/j.jad.2019.05.070
https://doi.org/10.1016/j.jad.2019.05.070
https://doi.org/10.1016/j.jad.2019.05.070
https://doi.org/10.1016/j.jad.2019.05.070
https://doi.org/10.1016/j.jad.2019.05.070
https://doi.org/10.1016/j.jad.2019.05.070
https://doi.org/10.1016/j.jad.2019.05.070
https://doi.org/10.1016/j.jad.2019.05.070
https://doi.org/10.1016/j.jad.2019.05.070
https://pubmed.ncbi.nlm.nih.gov/31176185
https://doi.org/10.1080/16506073.2017.1304445
https://doi.org/10.1080/16506073.2017.1304445
https://doi.org/10.1080/16506073.2017.1304445
https://doi.org/10.1080/16506073.2017.1304445
https://doi.org/10.1080/16506073.2017.1304445
https://doi.org/10.1080/16506073.2017.1304445
https://doi.org/10.1080/16506073.2017.1304445
https://doi.org/10.1080/16506073.2017.1304445
https://doi.org/10.1080/16506073.2017.1304445
https://pubmed.ncbi.nlm.nih.gov/28440699
https://doi.org/10.1016/j.jad.2021.04.081
https://doi.org/10.1016/j.jad.2021.04.081
https://doi.org/10.1016/j.jad.2021.04.081
https://doi.org/10.1016/j.jad.2021.04.081
https://doi.org/10.1016/j.jad.2021.04.081
https://doi.org/10.1016/j.jad.2021.04.081
https://doi.org/10.1016/j.jad.2021.04.081
https://doi.org/10.1016/j.jad.2021.04.081
https://doi.org/10.1016/j.jad.2021.04.081
https://doi.org/10.1016/j.jad.2021.04.081
https://doi.org/10.1016/j.jad.2021.04.081
https://pubmed.ncbi.nlm.nih.gov/34010751

Treatment response prediction in major depression using brain activity

Medicine, 51(12), 2117-2125.
, PubMed:

Huys, Q. J., Daw, N. D., & Dayan, P. (2015). Depression: A
decision-theoretic analysis. Annual Review of Neuroscience,
38, 1-23.

, PubMed:

Huys, Q. J., Maia, T. V., & Frank, M. J. (2016). Computational psy-
chiatry as a bridge from neuroscience to clinical applications.
Nature Neuroscience, 19(3), 404-413.

, PubMed:

Huys, Q. )., Pizzagalli, D. A., Bogdan, R., & Dayan, P. (2013).
Mapping anhedonia onto reinforcement learning: A behavioural
meta-analysis. Biology of Mood and Anxiety Disorders, 3(1),
1-16. , PubMed:

IsHak, W. W., Balayan, K., Bresee, C., Greenberg, J. M., Fakhry, H.,
Christensen, S., & Rapaport, M. H. (2013). A descriptive analysis
of quality of life using patient-reported measures in major depres-
sive disorder in a naturalistic outpatient setting. Quality of Life
Research, 22(3), 585-596.

, PubMed:

IsHak, W. W., Greenberg, J. M., Balayan, K., Kapitanski, N., Jeffrey,
J., Fathy, H., ... Rapaport, M. H. (2011). Quality of life: The
ultimate outcome measure of interventions in major depressive
disorder. Harvard Review of Psychiatry, 19(5), 229-239.

, PubMed:

James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C.,
Abbasi, N., ... Murray, C. J. L. (2018). Global, regional, and
national incidence, prevalence, and years lived with disability
for 354 diseases and injuries for 195 countries and territories,
1990-2017: A systematic analysis for the global burden of dis-
ease study 2017. Lancet, 392(10159), 1789-1858.

, PubMed:

Janssen, R. J., Mourao-Miranda, J., & Schnack, H. G. (2018).
Making individual prognoses in psychiatry using neuroimaging
and machine learning. Biological Psychiatry: Cognitive Neurosci-
ence and Neurolmaging, 3(9), 798-808.

, PubMed:

Jaworska, N., de la Salle, S., Ibrahim, M.-H., Blier, P., & Knott, V.
(2019). Leveraging machine learning approaches for predicting
antidepressant treatment response using electroencephalography
(EEG) and clinical data. Frontiers in Psychiatry, 9, 768.

, PubMed:

Ju, Y., Horien, C., Chen, W., Guo, W., Lu, X., Sun, J., ... Li, L. (2020).
Connectome-based models can predict early symptom improve-
ment in major depressive disorder. Journal of Affective Disorders,
273, 442-452. ,
PubMed:

Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli,
D. A. (2015). Large-scale network dysfunction in major depres-
sive disorder: A meta-analysis of resting-state functional connec-
tivity. JAMA Psychiatry, 72(6), 603-611.

, PubMed:

Kang, S.-G., & Cho, S.-E. (2020). Neuroimaging biomarkers for pre-
dicting treatment response and recurrence of major depressive
disorder. International Journal of Molecular Sciences, 21(6),
2148. , PubMed:

Network Neuroscience

Karim, H. T., Wang, M., Andreescu, C., Tudorascu, D., Butters,
M. A., Karp, J. F., ... Aizenstein, H. J. (2018). Acute trajectories
of neural activation predict remission to pharmacotherapy in
late-life depression. Neurolmage: Clinical, 19, 831-839.

, PubMed:

Katahira, K., & Toyama, A. (2021). Revisiting the importance of
model fitting for model-based fMRI: It does matter in computa-
tional psychiatry. PLoS Computational Biology, 17(2), e1008738.

, PubMed:

Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., &
King, D. (2019). Key challenges for delivering clinical impact
with artificial intelligence. BMC Medicine, 17(1), 1-9.

, PubMed:

Kennedy, S. H., Downar, J., Evans, K. R., Feilotter, H., Lam, R. W.,
MacQueen, G. M., ... Soares, C. (2012). The Canadian biomarker
integration network in depression (CAN-BIND): Advances in
response prediction. Current Pharmaceutical Design, 18(36),
5976-5989. ,
PubMed:

Keren, H., O’Callaghan, G., Vidal-Ribas, P., Buzzell, G. A.,
Brotman, M. A., Leibenluft, E., ... Stringaris, A. (2018). Reward
processing in depression: A conceptual and meta-analytic review
across fMRI and EEG studies. American Journal of Psychiatry,
175(11), 1111-1120.

, PubMed:

Khodayari-Rostamabad, A., Reilly, J. P., Hasey, G., de Bruin, H., &
MacCrimmon, D. (2010). Using pre-treatment EEG data to pre-
dict response to SSRI treatment for MDD. In 2070 Annual Inter-
national Conference of the IEEE Engineering in Medicine and
Biology Society (pp. 6103-6106).

, PubMed:

Khodayari-Rostamabad, A., Reilly, J. P., Hasey, G. M., de Bruin, H.,
& MacCrimmon, D. (2011). Using pre-treatment electroenceph-
alography data to predict response to transcranial magnetic
stimulation therapy for major depression. In 2011 Annual Inter-
national Conference of the IEEE Engineering in Medicine and
Biology Society (pp. 6418-6421).

, PubMed:

Khodayari-Rostamabad, A., Reilly, J. P., Hasey, G. M., de Bruin, H., &
MacCrimmon, D.J. (2013). A machine learning approach using EEG
data to predict response to SSRI treatment for major depressive
disorder. Clinical Neurophysiology, 124(10), 1975-1985.

, PubMed:

Klobl, M., Gryglewski, G., Rischka, L., Godbersen, G. M.,
Unterholzner, J., Reed, M. B., ... Lanzenberger, R. (2020). Pre-
dicting antidepressant citalopram treatment response via changes
in brain functional connectivity after acute intravenous challenge.
Frontiers in Computational Neuroscience, 14, 554186.

, PubMed:

Kong, Y., Gao, S., Yue, Y., Hou, Z., Shu, H., Xie, C., ... Yuan, Y. (2021).
Spatio-temporal graph convolutional network for diagnosis and treat-
ment response prediction of major depressive disorder from func-
tional connectivity. Human Brain Mapping, 42(12), 3922-3933.

, PubMed:

Korgaonkar, M. S., Goldstein-Piekarski, A. N., Fornito, A., &
Williams, L. M. (2020). Intrinsic connectomes are a predictive
biomarker of remission in major depressive disorder. Molecular

1099

%20z AInF 92 uo 3senb Aq 4pd-g£Z00 B UIBU/99Z9502/9901/7/9/4pd-8l01ie/ujeu/npa W j08.Ip//:dny Woly papeojumoq


https://doi.org/10.1017/S0033291720000896
https://doi.org/10.1017/S0033291720000896
https://doi.org/10.1017/S0033291720000896
https://doi.org/10.1017/S0033291720000896
https://doi.org/10.1017/S0033291720000896
https://doi.org/10.1017/S0033291720000896
https://doi.org/10.1017/S0033291720000896
https://pubmed.ncbi.nlm.nih.gov/32438932
https://doi.org/10.1146/annurev-neuro-071714-033928
https://doi.org/10.1146/annurev-neuro-071714-033928
https://doi.org/10.1146/annurev-neuro-071714-033928
https://doi.org/10.1146/annurev-neuro-071714-033928
https://doi.org/10.1146/annurev-neuro-071714-033928
https://doi.org/10.1146/annurev-neuro-071714-033928
https://doi.org/10.1146/annurev-neuro-071714-033928
https://doi.org/10.1146/annurev-neuro-071714-033928
https://doi.org/10.1146/annurev-neuro-071714-033928
https://doi.org/10.1146/annurev-neuro-071714-033928
https://pubmed.ncbi.nlm.nih.gov/25705929
https://doi.org/10.1038/nn.4238
https://doi.org/10.1038/nn.4238
https://doi.org/10.1038/nn.4238
https://doi.org/10.1038/nn.4238
https://doi.org/10.1038/nn.4238
https://doi.org/10.1038/nn.4238
https://doi.org/10.1038/nn.4238
https://doi.org/10.1038/nn.4238
https://pubmed.ncbi.nlm.nih.gov/26906507
https://doi.org/10.1186/2045-5380-3-12
https://doi.org/10.1186/2045-5380-3-12
https://doi.org/10.1186/2045-5380-3-12
https://doi.org/10.1186/2045-5380-3-12
https://doi.org/10.1186/2045-5380-3-12
https://doi.org/10.1186/2045-5380-3-12
https://doi.org/10.1186/2045-5380-3-12
https://doi.org/10.1186/2045-5380-3-12
https://doi.org/10.1186/2045-5380-3-12
https://doi.org/10.1186/2045-5380-3-12
https://pubmed.ncbi.nlm.nih.gov/23782813
https://doi.org/10.1007/s11136-012-0187-6
https://doi.org/10.1007/s11136-012-0187-6
https://doi.org/10.1007/s11136-012-0187-6
https://doi.org/10.1007/s11136-012-0187-6
https://doi.org/10.1007/s11136-012-0187-6
https://doi.org/10.1007/s11136-012-0187-6
https://doi.org/10.1007/s11136-012-0187-6
https://doi.org/10.1007/s11136-012-0187-6
https://doi.org/10.1007/s11136-012-0187-6
https://doi.org/10.1007/s11136-012-0187-6
https://pubmed.ncbi.nlm.nih.gov/22544416
https://doi.org/10.3109/10673229.2011.614099
https://doi.org/10.3109/10673229.2011.614099
https://doi.org/10.3109/10673229.2011.614099
https://doi.org/10.3109/10673229.2011.614099
https://doi.org/10.3109/10673229.2011.614099
https://doi.org/10.3109/10673229.2011.614099
https://doi.org/10.3109/10673229.2011.614099
https://doi.org/10.3109/10673229.2011.614099
https://doi.org/10.3109/10673229.2011.614099
https://doi.org/10.3109/10673229.2011.614099
https://pubmed.ncbi.nlm.nih.gov/21916825
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1016/S0140-6736(18)32279-7
https://pubmed.ncbi.nlm.nih.gov/30496104
https://doi.org/10.1016/j.bpsc.2018.04.004
https://doi.org/10.1016/j.bpsc.2018.04.004
https://doi.org/10.1016/j.bpsc.2018.04.004
https://doi.org/10.1016/j.bpsc.2018.04.004
https://doi.org/10.1016/j.bpsc.2018.04.004
https://doi.org/10.1016/j.bpsc.2018.04.004
https://doi.org/10.1016/j.bpsc.2018.04.004
https://doi.org/10.1016/j.bpsc.2018.04.004
https://doi.org/10.1016/j.bpsc.2018.04.004
https://doi.org/10.1016/j.bpsc.2018.04.004
https://doi.org/10.1016/j.bpsc.2018.04.004
https://pubmed.ncbi.nlm.nih.gov/29789268
https://doi.org/10.3389/fpsyt.2018.00768
https://doi.org/10.3389/fpsyt.2018.00768
https://doi.org/10.3389/fpsyt.2018.00768
https://doi.org/10.3389/fpsyt.2018.00768
https://doi.org/10.3389/fpsyt.2018.00768
https://doi.org/10.3389/fpsyt.2018.00768
https://doi.org/10.3389/fpsyt.2018.00768
https://doi.org/10.3389/fpsyt.2018.00768
https://doi.org/10.3389/fpsyt.2018.00768
https://pubmed.ncbi.nlm.nih.gov/30692945
https://doi.org/10.1016/j.jad.2020.04.028
https://doi.org/10.1016/j.jad.2020.04.028
https://doi.org/10.1016/j.jad.2020.04.028
https://doi.org/10.1016/j.jad.2020.04.028
https://doi.org/10.1016/j.jad.2020.04.028
https://doi.org/10.1016/j.jad.2020.04.028
https://doi.org/10.1016/j.jad.2020.04.028
https://doi.org/10.1016/j.jad.2020.04.028
https://doi.org/10.1016/j.jad.2020.04.028
https://doi.org/10.1016/j.jad.2020.04.028
https://doi.org/10.1016/j.jad.2020.04.028
https://pubmed.ncbi.nlm.nih.gov/32560939
https://doi.org/10.1001/jamapsychiatry.2015.0071
https://doi.org/10.1001/jamapsychiatry.2015.0071
https://doi.org/10.1001/jamapsychiatry.2015.0071
https://doi.org/10.1001/jamapsychiatry.2015.0071
https://doi.org/10.1001/jamapsychiatry.2015.0071
https://doi.org/10.1001/jamapsychiatry.2015.0071
https://doi.org/10.1001/jamapsychiatry.2015.0071
https://doi.org/10.1001/jamapsychiatry.2015.0071
https://doi.org/10.1001/jamapsychiatry.2015.0071
https://pubmed.ncbi.nlm.nih.gov/25785575
https://doi.org/10.3390/ijms21062148
https://doi.org/10.3390/ijms21062148
https://doi.org/10.3390/ijms21062148
https://doi.org/10.3390/ijms21062148
https://doi.org/10.3390/ijms21062148
https://doi.org/10.3390/ijms21062148
https://doi.org/10.3390/ijms21062148
https://pubmed.ncbi.nlm.nih.gov/32245086
https://doi.org/10.1016/j.nicl.2018.06.006
https://doi.org/10.1016/j.nicl.2018.06.006
https://doi.org/10.1016/j.nicl.2018.06.006
https://doi.org/10.1016/j.nicl.2018.06.006
https://doi.org/10.1016/j.nicl.2018.06.006
https://doi.org/10.1016/j.nicl.2018.06.006
https://doi.org/10.1016/j.nicl.2018.06.006
https://doi.org/10.1016/j.nicl.2018.06.006
https://doi.org/10.1016/j.nicl.2018.06.006
https://doi.org/10.1016/j.nicl.2018.06.006
https://doi.org/10.1016/j.nicl.2018.06.006
https://doi.org/10.1016/j.nicl.2018.06.006
https://pubmed.ncbi.nlm.nih.gov/30013927
https://doi.org/10.1371/journal.pcbi.1008738
https://doi.org/10.1371/journal.pcbi.1008738
https://doi.org/10.1371/journal.pcbi.1008738
https://doi.org/10.1371/journal.pcbi.1008738
https://doi.org/10.1371/journal.pcbi.1008738
https://doi.org/10.1371/journal.pcbi.1008738
https://doi.org/10.1371/journal.pcbi.1008738
https://doi.org/10.1371/journal.pcbi.1008738
https://doi.org/10.1371/journal.pcbi.1008738
https://pubmed.ncbi.nlm.nih.gov/33561125
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1186/s12916-019-1426-2
https://pubmed.ncbi.nlm.nih.gov/31665002
https://doi.org/10.2174/138161212803523635
https://doi.org/10.2174/138161212803523635
https://doi.org/10.2174/138161212803523635
https://doi.org/10.2174/138161212803523635
https://doi.org/10.2174/138161212803523635
https://doi.org/10.2174/138161212803523635
https://doi.org/10.2174/138161212803523635
https://pubmed.ncbi.nlm.nih.gov/22681173
https://doi.org/10.1176/appi.ajp.2018.17101124
https://doi.org/10.1176/appi.ajp.2018.17101124
https://doi.org/10.1176/appi.ajp.2018.17101124
https://doi.org/10.1176/appi.ajp.2018.17101124
https://doi.org/10.1176/appi.ajp.2018.17101124
https://doi.org/10.1176/appi.ajp.2018.17101124
https://doi.org/10.1176/appi.ajp.2018.17101124
https://doi.org/10.1176/appi.ajp.2018.17101124
https://doi.org/10.1176/appi.ajp.2018.17101124
https://doi.org/10.1176/appi.ajp.2018.17101124
https://pubmed.ncbi.nlm.nih.gov/29921146
https://doi.org/10.1109/IEMBS.2010.5627823
https://doi.org/10.1109/IEMBS.2010.5627823
https://doi.org/10.1109/IEMBS.2010.5627823
https://doi.org/10.1109/IEMBS.2010.5627823
https://doi.org/10.1109/IEMBS.2010.5627823
https://doi.org/10.1109/IEMBS.2010.5627823
https://doi.org/10.1109/IEMBS.2010.5627823
https://doi.org/10.1109/IEMBS.2010.5627823
https://doi.org/10.1109/IEMBS.2010.5627823
https://doi.org/10.1109/IEMBS.2010.5627823
https://pubmed.ncbi.nlm.nih.gov/21097134
https://doi.org/10.1109/IEMBS.2011.6091584
https://doi.org/10.1109/IEMBS.2011.6091584
https://doi.org/10.1109/IEMBS.2011.6091584
https://doi.org/10.1109/IEMBS.2011.6091584
https://doi.org/10.1109/IEMBS.2011.6091584
https://doi.org/10.1109/IEMBS.2011.6091584
https://doi.org/10.1109/IEMBS.2011.6091584
https://doi.org/10.1109/IEMBS.2011.6091584
https://doi.org/10.1109/IEMBS.2011.6091584
https://doi.org/10.1109/IEMBS.2011.6091584
https://pubmed.ncbi.nlm.nih.gov/22255807
https://doi.org/10.1016/j.clinph.2013.04.010
https://doi.org/10.1016/j.clinph.2013.04.010
https://doi.org/10.1016/j.clinph.2013.04.010
https://doi.org/10.1016/j.clinph.2013.04.010
https://doi.org/10.1016/j.clinph.2013.04.010
https://doi.org/10.1016/j.clinph.2013.04.010
https://doi.org/10.1016/j.clinph.2013.04.010
https://doi.org/10.1016/j.clinph.2013.04.010
https://doi.org/10.1016/j.clinph.2013.04.010
https://doi.org/10.1016/j.clinph.2013.04.010
https://doi.org/10.1016/j.clinph.2013.04.010
https://doi.org/10.1016/j.clinph.2013.04.010
https://pubmed.ncbi.nlm.nih.gov/23684127
https://doi.org/10.3389/fncom.2020.554186
https://doi.org/10.3389/fncom.2020.554186
https://doi.org/10.3389/fncom.2020.554186
https://doi.org/10.3389/fncom.2020.554186
https://doi.org/10.3389/fncom.2020.554186
https://doi.org/10.3389/fncom.2020.554186
https://doi.org/10.3389/fncom.2020.554186
https://doi.org/10.3389/fncom.2020.554186
https://doi.org/10.3389/fncom.2020.554186
https://pubmed.ncbi.nlm.nih.gov/33123000
https://doi.org/10.1002/hbm.25529
https://doi.org/10.1002/hbm.25529
https://doi.org/10.1002/hbm.25529
https://doi.org/10.1002/hbm.25529
https://doi.org/10.1002/hbm.25529
https://doi.org/10.1002/hbm.25529
https://doi.org/10.1002/hbm.25529
https://doi.org/10.1002/hbm.25529
https://doi.org/10.1002/hbm.25529
https://pubmed.ncbi.nlm.nih.gov/33969930

Treatment response prediction in major depression using brain activity

Psychiatry, 25(7), 1537-1549.
, PubMed:

Koshiyama, D., Kirihara, K., Usui, K., Tada, M., Fujioka, M., Morita,
S., ... Kasai, K. (2020). Resting-state EEG beta band power
predicts quality of life outcomes in patients with depressive
disorders: A longitudinal investigation. Journal of Affective Disor-
ders, 265, 416-422. ,
PubMed:

Kube, T., Schwarting, R., Rozenkrantz, L., Glombiewski, J. A., &
Rief, W. (2020). Distorted cognitive processes in major depres-
sion: A predictive processing perspective. Biological Psychiatry,
87(5), 388-398. ,
PubMed:

Kupfer, D. )., Frank, E., & Phillips, M. L. (2012). Major depressive
disorder: New clinical, neurobiological, and treatment perspec-
tives. Lancet, 379(9820), 1045-1055.

, PubMed:

Lam, R. W., Parikh, S. V., Michalak, E. E., Dewa, C. S., & Kennedy,
S. H. (2015). Canadian Network for Mood and Anxiety Treat-
ments (CANMAT) consensus recommendations for functional
outcomes in major depressive disorder. Annals of Clinical Psychi-
atry, 27(2), 142-149. PubMed:

Leaver, A. M., Wade, B., Vasavada, M., Hellemann, G., Joshi, S. H.,
Espinoza, R., & Narr, K. L. (2018). Fronto-temporal connectivity
predicts ECT outcome in major depression. Frontiers in Psychia-
try, 9, 92. , PubMed:

Leon, A., Solomon, D., Mueller, T., Turvey, C., Endicott, J., & Keller,
M. (1999). The range of impaired functioning tool (liferift): A
brief measure of functional impairment. Psychological Medicine,
29(4), 869-878. ,
PubMed:

Leuchter, A. F., Cook, I. A., Gilmer, W. S., Marangell, L. B.,
Burgoyne, K. S., Howland, R. H., ... Greenwald, S. (2009). Effec-
tiveness of a quantitative electroencephalographic biomarker for
predicting differential response or remission with escitalopram
and bupropion in major depressive disorder. Psychiatry Research,
169(2), 132-138.

, PubMed:

Li, B., Friston, K., Mody, M., Wang, H., Lu, H., & Hu, D. (2018). A
brain network model for depression: From symptom under-
standing to disease intervention. CNS Neuroscience and Thera-
peutics, 24(11), 1004-1019. ,
PubMed:

Liu, G. F,, Lu, K., Mogg, R., Mallick, M., & Mehrotra, D. V. (2009).
Should baseline be a covariate or dependent variable in analyses
of change from baseline in clinical trials? Statistics in Medicine,
28(20), 2509-2530. , PubMed:

Lord, F. M. (1967). A paradox in the interpretation of group com-

parisons. Psychological Bulletin, 68(5), 304-305.
, PubMed:

Luedtke, A., & Kessler, R. C. (2021). New directions in research on
heterogeneity of treatment effects for major depression. JAMA
Psychiatry, 78(5), 478-480.

, PubMed:

Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A., Lamy, C.,

Magrou, L., Vezoli, ., ... Kennedy, H. (2014). A weighted and

Network Neuroscience

directed interareal connectivity matrix for macaque cerebral
cortex. Cerebral Cortex, 24(1), 17-36.
, PubMed:

Marquand, A. F., Mourao-Miranda, J., Brammer, M. J., Cleare, A. J.,
& Fu, C. H. (2008). Neuroanatomy of verbal working memory as
a diagnostic biomarker for depression. Neuroreport, 19(15),
1507-1511. ,
PubMed:

Maxwell, S. E., & Delaney, H. D. (1993). Bivariate median splits
and spurious statistical significance. Psychological Bulletin,
113(1), 181-190.

Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E.,
Seminowicz, D., Hamani, C., ... Kennedy, S. H. (2005). Deep
brain stimulation for treatment-resistant depression. Neuron,
45(5), 651-660. )
PubMed:

Meyer, B. M., Rabl, U., Huemer, J., Bartova, L., Kalcher, K., Proven-
zano, J., ... Pezawas, L. (2019). Prefrontal networks dynamically
related to recovery from major depressive disorder: A longitudi-
nal pharmacological fMRI study. Translational Psychiatry, 9(1),
64. , PubMed:

Miller, J. M., Schneck, N., Siegle, G. )., Chen, Y., Ogden, R. T,,
Kikuchi, T., ... Parsey, R. V. (2013). fMRI response to negative
words and SSRI treatment outcome in major depressive disorder:
A preliminary study. Psychiatry Research: Neuroimaging, 214(3),
296-305. )
PubMed:

Montgomery, S. A., & Asberg, M. (1979). A new depression scale
designed to be sensitive to change. British Journal of Psychiatry,
134(4), 382-389. ,
PubMed:

Moran, R. J., Symmonds, M., Stephan, K. E., Friston, K. J., & Dolan,
R.J. (2011). An in vivo assay of synaptic function mediating
human cognition. Current Biology, 21(15), 1320-1325.

, PubMed:

Moreno-Ortega, M., Prudic, J., Rowny, S., Patel, G., Kangarlu, A.,
Lee, S., ... Javitt, D. C. (2019). Resting state functional connectiv-
ity predictors of treatment response to electroconvulsive therapy
in depression. Scientific Reports, 9(1), 5071.

, PubMed:

Morton, E., Bhat, V., Giacobbe, P., Lou, W., Michalak, E. E.,
Chakrabarty, T., ... CAN-BIND Investigator Team. (2021). Impacts
on quality of life with escitalopram monotherapy and aripipra-
zole augmentation in patients with major depressive disorder:
A CAN-BIND report. Pharmacopsychiatry, 54(5), 225-231.

, PubMed:

Mukherjee, D., Lee, S., Kazinka, R., Satterthwaite, T. D., & Kable,
J. W. (2020). Multiple facets of value-based decision making in
major depressive disorder. Scientific Reports, 10(1), 3415.

, PubMed:

Mumtaz, W., Xia, L., Mohd Yasin, M. A., Azhar Ali, S. S., & Malik,
A. S. (2017). A wavelet-based technique to predict treatment
outcome for major depressive disorder. PLoS ONE, 12(2),
e0171409. ,
PubMed:

Must, A., Horvath, S., Nemeth, V. L., & Janka, Z. (2013). The lowa
gambling task in depression—What have we learned about

1100

%20z AInF 92 uo 3senb Aq 4pd-g£Z00 B UIBU/99Z9502/9901/7/9/4pd-8l01ie/ujeu/npa W j08.Ip//:dny Woly papeojumoq


https://doi.org/10.1038/s41380-019-0574-2
https://doi.org/10.1038/s41380-019-0574-2
https://doi.org/10.1038/s41380-019-0574-2
https://doi.org/10.1038/s41380-019-0574-2
https://doi.org/10.1038/s41380-019-0574-2
https://doi.org/10.1038/s41380-019-0574-2
https://doi.org/10.1038/s41380-019-0574-2
https://doi.org/10.1038/s41380-019-0574-2
https://doi.org/10.1038/s41380-019-0574-2
https://doi.org/10.1038/s41380-019-0574-2
https://pubmed.ncbi.nlm.nih.gov/31695168
https://doi.org/10.1016/j.jad.2020.01.030
https://doi.org/10.1016/j.jad.2020.01.030
https://doi.org/10.1016/j.jad.2020.01.030
https://doi.org/10.1016/j.jad.2020.01.030
https://doi.org/10.1016/j.jad.2020.01.030
https://doi.org/10.1016/j.jad.2020.01.030
https://doi.org/10.1016/j.jad.2020.01.030
https://doi.org/10.1016/j.jad.2020.01.030
https://doi.org/10.1016/j.jad.2020.01.030
https://doi.org/10.1016/j.jad.2020.01.030
https://doi.org/10.1016/j.jad.2020.01.030
https://pubmed.ncbi.nlm.nih.gov/32090768
https://doi.org/10.1016/j.biopsych.2019.07.017
https://doi.org/10.1016/j.biopsych.2019.07.017
https://doi.org/10.1016/j.biopsych.2019.07.017
https://doi.org/10.1016/j.biopsych.2019.07.017
https://doi.org/10.1016/j.biopsych.2019.07.017
https://doi.org/10.1016/j.biopsych.2019.07.017
https://doi.org/10.1016/j.biopsych.2019.07.017
https://doi.org/10.1016/j.biopsych.2019.07.017
https://doi.org/10.1016/j.biopsych.2019.07.017
https://doi.org/10.1016/j.biopsych.2019.07.017
https://doi.org/10.1016/j.biopsych.2019.07.017
https://pubmed.ncbi.nlm.nih.gov/31515055
https://doi.org/10.1016/S0140-6736(11)60602-8
https://doi.org/10.1016/S0140-6736(11)60602-8
https://doi.org/10.1016/S0140-6736(11)60602-8
https://doi.org/10.1016/S0140-6736(11)60602-8
https://doi.org/10.1016/S0140-6736(11)60602-8
https://doi.org/10.1016/S0140-6736(11)60602-8
https://doi.org/10.1016/S0140-6736(11)60602-8
https://doi.org/10.1016/S0140-6736(11)60602-8
https://doi.org/10.1016/S0140-6736(11)60602-8
https://pubmed.ncbi.nlm.nih.gov/22189047
https://pubmed.ncbi.nlm.nih.gov/25954941
https://doi.org/10.3389/fpsyt.2018.00092
https://doi.org/10.3389/fpsyt.2018.00092
https://doi.org/10.3389/fpsyt.2018.00092
https://doi.org/10.3389/fpsyt.2018.00092
https://doi.org/10.3389/fpsyt.2018.00092
https://doi.org/10.3389/fpsyt.2018.00092
https://doi.org/10.3389/fpsyt.2018.00092
https://doi.org/10.3389/fpsyt.2018.00092
https://doi.org/10.3389/fpsyt.2018.00092
https://pubmed.ncbi.nlm.nih.gov/29618992
https://doi.org/10.1017/S0033291799008570
https://doi.org/10.1017/S0033291799008570
https://doi.org/10.1017/S0033291799008570
https://doi.org/10.1017/S0033291799008570
https://doi.org/10.1017/S0033291799008570
https://doi.org/10.1017/S0033291799008570
https://doi.org/10.1017/S0033291799008570
https://pubmed.ncbi.nlm.nih.gov/10473314
https://doi.org/10.1016/j.psychres.2009.04.004
https://doi.org/10.1016/j.psychres.2009.04.004
https://doi.org/10.1016/j.psychres.2009.04.004
https://doi.org/10.1016/j.psychres.2009.04.004
https://doi.org/10.1016/j.psychres.2009.04.004
https://doi.org/10.1016/j.psychres.2009.04.004
https://doi.org/10.1016/j.psychres.2009.04.004
https://doi.org/10.1016/j.psychres.2009.04.004
https://doi.org/10.1016/j.psychres.2009.04.004
https://doi.org/10.1016/j.psychres.2009.04.004
https://doi.org/10.1016/j.psychres.2009.04.004
https://pubmed.ncbi.nlm.nih.gov/19709754
https://doi.org/10.1111/cns.12998
https://doi.org/10.1111/cns.12998
https://doi.org/10.1111/cns.12998
https://doi.org/10.1111/cns.12998
https://doi.org/10.1111/cns.12998
https://doi.org/10.1111/cns.12998
https://doi.org/10.1111/cns.12998
https://doi.org/10.1111/cns.12998
https://pubmed.ncbi.nlm.nih.gov/29931740
https://doi.org/10.1002/sim.3639
https://doi.org/10.1002/sim.3639
https://doi.org/10.1002/sim.3639
https://doi.org/10.1002/sim.3639
https://doi.org/10.1002/sim.3639
https://doi.org/10.1002/sim.3639
https://doi.org/10.1002/sim.3639
https://doi.org/10.1002/sim.3639
https://pubmed.ncbi.nlm.nih.gov/19610129
https://doi.org/10.1037/h0025105
https://doi.org/10.1037/h0025105
https://doi.org/10.1037/h0025105
https://doi.org/10.1037/h0025105
https://doi.org/10.1037/h0025105
https://doi.org/10.1037/h0025105
https://doi.org/10.1037/h0025105
https://doi.org/10.1037/h0025105
https://pubmed.ncbi.nlm.nih.gov/6062585
https://doi.org/10.1001/jamapsychiatry.2020.4489
https://doi.org/10.1001/jamapsychiatry.2020.4489
https://doi.org/10.1001/jamapsychiatry.2020.4489
https://doi.org/10.1001/jamapsychiatry.2020.4489
https://doi.org/10.1001/jamapsychiatry.2020.4489
https://doi.org/10.1001/jamapsychiatry.2020.4489
https://doi.org/10.1001/jamapsychiatry.2020.4489
https://doi.org/10.1001/jamapsychiatry.2020.4489
https://doi.org/10.1001/jamapsychiatry.2020.4489
https://pubmed.ncbi.nlm.nih.gov/33595616
https://doi.org/10.1093/cercor/bhs270
https://doi.org/10.1093/cercor/bhs270
https://doi.org/10.1093/cercor/bhs270
https://doi.org/10.1093/cercor/bhs270
https://doi.org/10.1093/cercor/bhs270
https://doi.org/10.1093/cercor/bhs270
https://doi.org/10.1093/cercor/bhs270
https://doi.org/10.1093/cercor/bhs270
https://doi.org/10.1093/cercor/bhs270
https://pubmed.ncbi.nlm.nih.gov/23010748
https://doi.org/10.1097/WNR.0b013e328310425e
https://doi.org/10.1097/WNR.0b013e328310425e
https://doi.org/10.1097/WNR.0b013e328310425e
https://doi.org/10.1097/WNR.0b013e328310425e
https://doi.org/10.1097/WNR.0b013e328310425e
https://doi.org/10.1097/WNR.0b013e328310425e
https://doi.org/10.1097/WNR.0b013e328310425e
https://doi.org/10.1097/WNR.0b013e328310425e
https://doi.org/10.1097/WNR.0b013e328310425e
https://pubmed.ncbi.nlm.nih.gov/18797307
https://doi.org/10.1037/0033-2909.113.1.181
https://doi.org/10.1037/0033-2909.113.1.181
https://doi.org/10.1037/0033-2909.113.1.181
https://doi.org/10.1037/0033-2909.113.1.181
https://doi.org/10.1037/0033-2909.113.1.181
https://doi.org/10.1037/0033-2909.113.1.181
https://doi.org/10.1037/0033-2909.113.1.181
https://doi.org/10.1037/0033-2909.113.1.181
https://doi.org/10.1037/0033-2909.113.1.181
https://doi.org/10.1037/0033-2909.113.1.181
https://doi.org/10.1037/0033-2909.113.1.181
https://doi.org/10.1016/j.neuron.2005.02.014
https://doi.org/10.1016/j.neuron.2005.02.014
https://doi.org/10.1016/j.neuron.2005.02.014
https://doi.org/10.1016/j.neuron.2005.02.014
https://doi.org/10.1016/j.neuron.2005.02.014
https://doi.org/10.1016/j.neuron.2005.02.014
https://doi.org/10.1016/j.neuron.2005.02.014
https://doi.org/10.1016/j.neuron.2005.02.014
https://doi.org/10.1016/j.neuron.2005.02.014
https://doi.org/10.1016/j.neuron.2005.02.014
https://doi.org/10.1016/j.neuron.2005.02.014
https://pubmed.ncbi.nlm.nih.gov/15748841
https://doi.org/10.1038/s41398-019-0395-8
https://doi.org/10.1038/s41398-019-0395-8
https://doi.org/10.1038/s41398-019-0395-8
https://doi.org/10.1038/s41398-019-0395-8
https://doi.org/10.1038/s41398-019-0395-8
https://doi.org/10.1038/s41398-019-0395-8
https://doi.org/10.1038/s41398-019-0395-8
https://doi.org/10.1038/s41398-019-0395-8
https://doi.org/10.1038/s41398-019-0395-8
https://doi.org/10.1038/s41398-019-0395-8
https://pubmed.ncbi.nlm.nih.gov/30718459
https://doi.org/10.1016/j.pscychresns.2013.08.001
https://doi.org/10.1016/j.pscychresns.2013.08.001
https://doi.org/10.1016/j.pscychresns.2013.08.001
https://doi.org/10.1016/j.pscychresns.2013.08.001
https://doi.org/10.1016/j.pscychresns.2013.08.001
https://doi.org/10.1016/j.pscychresns.2013.08.001
https://doi.org/10.1016/j.pscychresns.2013.08.001
https://doi.org/10.1016/j.pscychresns.2013.08.001
https://doi.org/10.1016/j.pscychresns.2013.08.001
https://doi.org/10.1016/j.pscychresns.2013.08.001
https://doi.org/10.1016/j.pscychresns.2013.08.001
https://pubmed.ncbi.nlm.nih.gov/24446548
https://doi.org/10.1192/bjp.134.4.382
https://doi.org/10.1192/bjp.134.4.382
https://doi.org/10.1192/bjp.134.4.382
https://doi.org/10.1192/bjp.134.4.382
https://doi.org/10.1192/bjp.134.4.382
https://doi.org/10.1192/bjp.134.4.382
https://doi.org/10.1192/bjp.134.4.382
https://doi.org/10.1192/bjp.134.4.382
https://doi.org/10.1192/bjp.134.4.382
https://doi.org/10.1192/bjp.134.4.382
https://doi.org/10.1192/bjp.134.4.382
https://pubmed.ncbi.nlm.nih.gov/444788
https://doi.org/10.1016/j.cub.2011.06.053
https://doi.org/10.1016/j.cub.2011.06.053
https://doi.org/10.1016/j.cub.2011.06.053
https://doi.org/10.1016/j.cub.2011.06.053
https://doi.org/10.1016/j.cub.2011.06.053
https://doi.org/10.1016/j.cub.2011.06.053
https://doi.org/10.1016/j.cub.2011.06.053
https://doi.org/10.1016/j.cub.2011.06.053
https://doi.org/10.1016/j.cub.2011.06.053
https://doi.org/10.1016/j.cub.2011.06.053
https://doi.org/10.1016/j.cub.2011.06.053
https://doi.org/10.1016/j.cub.2011.06.053
https://pubmed.ncbi.nlm.nih.gov/21802302
https://doi.org/10.1038/s41598-019-41175-4
https://doi.org/10.1038/s41598-019-41175-4
https://doi.org/10.1038/s41598-019-41175-4
https://doi.org/10.1038/s41598-019-41175-4
https://doi.org/10.1038/s41598-019-41175-4
https://doi.org/10.1038/s41598-019-41175-4
https://doi.org/10.1038/s41598-019-41175-4
https://doi.org/10.1038/s41598-019-41175-4
https://doi.org/10.1038/s41598-019-41175-4
https://doi.org/10.1038/s41598-019-41175-4
https://pubmed.ncbi.nlm.nih.gov/30911075
https://doi.org/10.1055/a-1385-0263
https://doi.org/10.1055/a-1385-0263
https://doi.org/10.1055/a-1385-0263
https://doi.org/10.1055/a-1385-0263
https://doi.org/10.1055/a-1385-0263
https://doi.org/10.1055/a-1385-0263
https://doi.org/10.1055/a-1385-0263
https://doi.org/10.1055/a-1385-0263
https://doi.org/10.1055/a-1385-0263
https://pubmed.ncbi.nlm.nih.gov/33652477
https://doi.org/10.1038/s41598-020-60230-z
https://doi.org/10.1038/s41598-020-60230-z
https://doi.org/10.1038/s41598-020-60230-z
https://doi.org/10.1038/s41598-020-60230-z
https://doi.org/10.1038/s41598-020-60230-z
https://doi.org/10.1038/s41598-020-60230-z
https://doi.org/10.1038/s41598-020-60230-z
https://doi.org/10.1038/s41598-020-60230-z
https://doi.org/10.1038/s41598-020-60230-z
https://doi.org/10.1038/s41598-020-60230-z
https://doi.org/10.1038/s41598-020-60230-z
https://pubmed.ncbi.nlm.nih.gov/32099062
https://doi.org/10.1371/journal.pone.0171409
https://doi.org/10.1371/journal.pone.0171409
https://doi.org/10.1371/journal.pone.0171409
https://doi.org/10.1371/journal.pone.0171409
https://doi.org/10.1371/journal.pone.0171409
https://doi.org/10.1371/journal.pone.0171409
https://doi.org/10.1371/journal.pone.0171409
https://doi.org/10.1371/journal.pone.0171409
https://doi.org/10.1371/journal.pone.0171409
https://pubmed.ncbi.nlm.nih.gov/28152063

Treatment response prediction in major depression using brain activity

sub-optimal decision-making strategies? Frontiers in Psychology,
4, 732. , PubMed:

Nemati, S., Akiki, T. J., Roscoe, J., Ju, Y., Averill, C. L., Fouda, S., ...
Abdallah, C. G. (2020). A unique brain connectome fingerprint
predates and predicts response to antidepressants. iScience,
23(1), 100800. ,
PubMed:

Nguyen, K. P., Fatt, C. C., Treacher, A., Mellema, C., Trivedi, M. H.,
& Montillo, A. (2019). Predicting response to the antidepressant
bupropion using pretreatment fMRI. In International Workshop
on Predictive Intelligence in Medicine (pp. 53-62).

, PubMed:

O’Doherty, J. P., Hampton, A., & Kim, H. (2007). Model-based fMRI
and its application to reward learning and decision making.
Annals of the New York Academy of Sciences, 1104(1), 35-53.

, PubMed:

Olbrich, S., & Arns, M. (2013). EEG biomarkers in major depressive
disorder: Discriminative power and prediction of treatment
response. International Review of Psychiatry, 25(5), 604-618.

, PubMed:

Oluboka, O. ., Katzman, M. A., Habert, J., McIntosh, D., MacQueen,
G. M., Milev, R. V., ... Blier, P. (2018). Functional recovery in major
depressive disorder: Providing early optimal treatment for the
individual patient. International Journal of Neuropsychopharma-
cology, 21(2), 128-144. ,

PubMed:
Patel, M. J., Andreescu, C., Price, J. C., Edelman, K. L., Reynolds,
C. F., Ill, & Aizenstein, H. J. (2015). Machine learning

approaches for integrating clinical and imaging features in LLD
classification and response prediction. International Journal of
Geriatric Psychiatry, 30(10), 1056-1067.

, PubMed:

Paulus, M. P., & Angela, J. Y. (2012). Emotion and decision-making:
Affect-driven belief systems in anxiety and depression. Trends in
Cognitive Sciences, 16(9), 476-483.

, PubMed:

Pei, C., Sun, Y., Zhu, J., Wang, X., Zhang, Y., Zhang, S., ... Lu, Q.
(2020). Ensemble learning for early-response prediction of anti-
depressant treatment in major depressive disorder. Journal of
Magnetic Resonance Imaging, 52(1), 161-171.

, PubMed:

Perlman, K., Benrimoh, D., Israel, S., Rollins, C., Brown, E., Tunteng,
J.-F., ... Berlim, M. T. (2019). A systematic meta-review of predictors
of antidepressant treatment outcome in major depressive disorder.
Journal of Affective Disorders, 243, 503-515.

, PubMed:

Phillips, M. L., Chase, H. W., Sheline, Y. I., Etkin, A., Almeida, ). R.,
Deckersbach, T., & Trivedi, M. H. (2015). Identifying predictors,
moderators, and mediators of antidepressant response in major
depressive disorder: Neuroimaging approaches. American Jour-
nal of Psychiatry, 172(2), 124-138.

, PubMed:

Pizzagalli, D. A. (2014). Depression, stress, and anhedonia: Toward
a synthesis and integrated model. Annual Review of Clinical Psy-
chology, 10, 393-423.

, PubMed:

Network Neuroscience

Queirazza, F., Fouragnan, E., Steele, J. D., Cavanagh, J., &
Philiastides, M. G. (2019). Neural correlates of weighted reward
prediction error during reinforcement learning classify response
to cognitive behavioral therapy in depression. Science Advances,
5(7), eaav4962. ,
PubMed:

Rabinoff, M., Kitchen, C., Cook, I., & Leuchter, A. (2011). Evalua-
tion of quantitative EEG by classification and regression trees to
characterize responders to antidepressant and placebo treatment.
Open Medical Informatics Journal, 5, 1-8.

, PubMed:

Rajpurkar, P., Yang, J., Dass, N., Vale, V., Keller, A. S., Irvin, ., ...
Williams, L. M. (2020). Evaluation of a machine learning model
based on pretreatment symptoms and electroencephalographic
features to predict outcomes of antidepressant treatment in adults
with depression: A prespecified secondary analysis of a random-
ized clinical trial. JAMA Network Open, 3(6), €206653.

, PubMed:

Read, J., & Williams, J. (2018). Adverse effects of antidepressants
reported by a large international cohort: Emotional blunting,
suicidality, and withdrawal effects. Current Drug Safety, 13(3),
176-186. ,
PubMed:

Robinson, O. J., & Chase, H. W. (2017). Learning and choice in
mood disorders: Searching for the computational parameters of
anhedonia. Computational Psychiatry, 1(1), 208-233.

, PubMed:

Rudin, C. (2019). Stop explaining black box machine learning
models for high stakes decisions and use interpretable models
instead. Nature Machine Intelligence, 1(5), 206-215.

Rupprechter, S., Stankevicius, A., Huys, Q. J., Steele, J. D., & Seriés,
P. (2018). Major depression impairs the use of reward values for
decision-making. Scientific Reports, 8(1), 13798.

, PubMed:

Rush, A. J., Trivedi, M. H., Ibrahim, H. M., Carmody, T. J., Arnow,
B., Klein, D. N., ... Keller, M. B. (2003). The 16-item Quick Inven-
tory of Depressive Symptomatology (QIDS), clinician rating
(QIDS-C), and self-report (QIDS-SR): A psychometric evaluation
in patients with chronic major depression. Biological Psychiatry,
54(5), 573-583.

, PubMed:

Rush, A. J., Trivedi, M. H., Wisniewski, S. R., Nierenberg, A. A.,
Stewart, J. W., Warden, D., ... Fava, M. (2006). Acute and
longer-term outcomes in depressed outpatients requiring one or
several treatment steps: A STAR*D report. American Journal of
Psychiatry, 163(11), 1905-1917.

, PubMed:

Schobi, D., Homberg, F., Frassle, S., Endepols, H., Moran, R. J.,
Friston, K. J., ... Stephan, K. E. (2021). Model-based prediction
of muscarinic receptor function from auditory mismatch nega-
tivity responses. Neurolmage, 237, 118096.

, PubMed:

Schwab, J., Bialow, M., Clemmons, R., Martin, P., & Holzer, C.
(1967). The Beck depression inventory with medical inpatients.
Acta Psychiatrica Scandinavica, 43(3), 225-266.

, PubMed:

1101

%20z AInF 92 uo 3senb Aq 4pd-g£Z00 B UIBU/99Z9502/9901/7/9/4pd-8l01ie/ujeu/npa W j08.Ip//:dny Woly papeojumoq


https://doi.org/10.3389/fpsyg.2013.00732
https://doi.org/10.3389/fpsyg.2013.00732
https://doi.org/10.3389/fpsyg.2013.00732
https://doi.org/10.3389/fpsyg.2013.00732
https://doi.org/10.3389/fpsyg.2013.00732
https://doi.org/10.3389/fpsyg.2013.00732
https://doi.org/10.3389/fpsyg.2013.00732
https://doi.org/10.3389/fpsyg.2013.00732
https://doi.org/10.3389/fpsyg.2013.00732
https://pubmed.ncbi.nlm.nih.gov/24133474
https://doi.org/10.1016/j.isci.2019.100800
https://doi.org/10.1016/j.isci.2019.100800
https://doi.org/10.1016/j.isci.2019.100800
https://doi.org/10.1016/j.isci.2019.100800
https://doi.org/10.1016/j.isci.2019.100800
https://doi.org/10.1016/j.isci.2019.100800
https://doi.org/10.1016/j.isci.2019.100800
https://doi.org/10.1016/j.isci.2019.100800
https://doi.org/10.1016/j.isci.2019.100800
https://doi.org/10.1016/j.isci.2019.100800
https://pubmed.ncbi.nlm.nih.gov/31918047
https://doi.org/10.1007/978-3-030-32281-6_6
https://doi.org/10.1007/978-3-030-32281-6_6
https://doi.org/10.1007/978-3-030-32281-6_6
https://doi.org/10.1007/978-3-030-32281-6_6
https://doi.org/10.1007/978-3-030-32281-6_6
https://doi.org/10.1007/978-3-030-32281-6_6
https://doi.org/10.1007/978-3-030-32281-6_6
https://doi.org/10.1007/978-3-030-32281-6_6
https://doi.org/10.1007/978-3-030-32281-6_6
https://doi.org/10.1007/978-3-030-32281-6_6
https://doi.org/10.1007/978-3-030-32281-6_6
https://doi.org/10.1007/978-3-030-32281-6_6
https://pubmed.ncbi.nlm.nih.gov/31709423
https://doi.org/10.1196/annals.1390.022
https://doi.org/10.1196/annals.1390.022
https://doi.org/10.1196/annals.1390.022
https://doi.org/10.1196/annals.1390.022
https://doi.org/10.1196/annals.1390.022
https://doi.org/10.1196/annals.1390.022
https://doi.org/10.1196/annals.1390.022
https://doi.org/10.1196/annals.1390.022
https://doi.org/10.1196/annals.1390.022
https://pubmed.ncbi.nlm.nih.gov/17416921
https://doi.org/10.3109/09540261.2013.816269
https://doi.org/10.3109/09540261.2013.816269
https://doi.org/10.3109/09540261.2013.816269
https://doi.org/10.3109/09540261.2013.816269
https://doi.org/10.3109/09540261.2013.816269
https://doi.org/10.3109/09540261.2013.816269
https://doi.org/10.3109/09540261.2013.816269
https://doi.org/10.3109/09540261.2013.816269
https://doi.org/10.3109/09540261.2013.816269
https://pubmed.ncbi.nlm.nih.gov/24151805
https://doi.org/10.1093/ijnp/pyx081
https://doi.org/10.1093/ijnp/pyx081
https://doi.org/10.1093/ijnp/pyx081
https://doi.org/10.1093/ijnp/pyx081
https://doi.org/10.1093/ijnp/pyx081
https://doi.org/10.1093/ijnp/pyx081
https://doi.org/10.1093/ijnp/pyx081
https://doi.org/10.1093/ijnp/pyx081
https://pubmed.ncbi.nlm.nih.gov/29024974
https://doi.org/10.1002/gps.4262
https://doi.org/10.1002/gps.4262
https://doi.org/10.1002/gps.4262
https://doi.org/10.1002/gps.4262
https://doi.org/10.1002/gps.4262
https://doi.org/10.1002/gps.4262
https://doi.org/10.1002/gps.4262
https://doi.org/10.1002/gps.4262
https://pubmed.ncbi.nlm.nih.gov/25689482
https://doi.org/10.1016/j.tics.2012.07.009
https://doi.org/10.1016/j.tics.2012.07.009
https://doi.org/10.1016/j.tics.2012.07.009
https://doi.org/10.1016/j.tics.2012.07.009
https://doi.org/10.1016/j.tics.2012.07.009
https://doi.org/10.1016/j.tics.2012.07.009
https://doi.org/10.1016/j.tics.2012.07.009
https://doi.org/10.1016/j.tics.2012.07.009
https://doi.org/10.1016/j.tics.2012.07.009
https://doi.org/10.1016/j.tics.2012.07.009
https://doi.org/10.1016/j.tics.2012.07.009
https://pubmed.ncbi.nlm.nih.gov/22898207
https://doi.org/10.1002/jmri.27029
https://doi.org/10.1002/jmri.27029
https://doi.org/10.1002/jmri.27029
https://doi.org/10.1002/jmri.27029
https://doi.org/10.1002/jmri.27029
https://doi.org/10.1002/jmri.27029
https://doi.org/10.1002/jmri.27029
https://doi.org/10.1002/jmri.27029
https://pubmed.ncbi.nlm.nih.gov/31859419
https://doi.org/10.1016/j.jad.2018.09.067
https://doi.org/10.1016/j.jad.2018.09.067
https://doi.org/10.1016/j.jad.2018.09.067
https://doi.org/10.1016/j.jad.2018.09.067
https://doi.org/10.1016/j.jad.2018.09.067
https://doi.org/10.1016/j.jad.2018.09.067
https://doi.org/10.1016/j.jad.2018.09.067
https://doi.org/10.1016/j.jad.2018.09.067
https://doi.org/10.1016/j.jad.2018.09.067
https://doi.org/10.1016/j.jad.2018.09.067
https://doi.org/10.1016/j.jad.2018.09.067
https://pubmed.ncbi.nlm.nih.gov/30286415
https://doi.org/10.1176/appi.ajp.2014.14010076
https://doi.org/10.1176/appi.ajp.2014.14010076
https://doi.org/10.1176/appi.ajp.2014.14010076
https://doi.org/10.1176/appi.ajp.2014.14010076
https://doi.org/10.1176/appi.ajp.2014.14010076
https://doi.org/10.1176/appi.ajp.2014.14010076
https://doi.org/10.1176/appi.ajp.2014.14010076
https://doi.org/10.1176/appi.ajp.2014.14010076
https://doi.org/10.1176/appi.ajp.2014.14010076
https://doi.org/10.1176/appi.ajp.2014.14010076
https://pubmed.ncbi.nlm.nih.gov/25640931
https://doi.org/10.1146/annurev-clinpsy-050212-185606
https://doi.org/10.1146/annurev-clinpsy-050212-185606
https://doi.org/10.1146/annurev-clinpsy-050212-185606
https://doi.org/10.1146/annurev-clinpsy-050212-185606
https://doi.org/10.1146/annurev-clinpsy-050212-185606
https://doi.org/10.1146/annurev-clinpsy-050212-185606
https://doi.org/10.1146/annurev-clinpsy-050212-185606
https://doi.org/10.1146/annurev-clinpsy-050212-185606
https://doi.org/10.1146/annurev-clinpsy-050212-185606
https://doi.org/10.1146/annurev-clinpsy-050212-185606
https://pubmed.ncbi.nlm.nih.gov/24471371
https://doi.org/10.1126/sciadv.aav4962
https://doi.org/10.1126/sciadv.aav4962
https://doi.org/10.1126/sciadv.aav4962
https://doi.org/10.1126/sciadv.aav4962
https://doi.org/10.1126/sciadv.aav4962
https://doi.org/10.1126/sciadv.aav4962
https://doi.org/10.1126/sciadv.aav4962
https://doi.org/10.1126/sciadv.aav4962
https://pubmed.ncbi.nlm.nih.gov/31392266
https://doi.org/10.2174/1874431101105010001
https://doi.org/10.2174/1874431101105010001
https://doi.org/10.2174/1874431101105010001
https://doi.org/10.2174/1874431101105010001
https://doi.org/10.2174/1874431101105010001
https://doi.org/10.2174/1874431101105010001
https://doi.org/10.2174/1874431101105010001
https://pubmed.ncbi.nlm.nih.gov/21603560
https://doi.org/10.1001/jamanetworkopen.2020.6653
https://doi.org/10.1001/jamanetworkopen.2020.6653
https://doi.org/10.1001/jamanetworkopen.2020.6653
https://doi.org/10.1001/jamanetworkopen.2020.6653
https://doi.org/10.1001/jamanetworkopen.2020.6653
https://doi.org/10.1001/jamanetworkopen.2020.6653
https://doi.org/10.1001/jamanetworkopen.2020.6653
https://doi.org/10.1001/jamanetworkopen.2020.6653
https://doi.org/10.1001/jamanetworkopen.2020.6653
https://doi.org/10.1001/jamanetworkopen.2020.6653
https://pubmed.ncbi.nlm.nih.gov/32568399
https://doi.org/10.2174/1574886313666180605095130
https://doi.org/10.2174/1574886313666180605095130
https://doi.org/10.2174/1574886313666180605095130
https://doi.org/10.2174/1574886313666180605095130
https://doi.org/10.2174/1574886313666180605095130
https://doi.org/10.2174/1574886313666180605095130
https://doi.org/10.2174/1574886313666180605095130
https://pubmed.ncbi.nlm.nih.gov/29866014
https://doi.org/10.1162/CPSY_a_00009
https://doi.org/10.1162/CPSY_a_00009
https://doi.org/10.1162/CPSY_a_00009
https://doi.org/10.1162/CPSY_a_00009
https://doi.org/10.1162/CPSY_a_00009
https://doi.org/10.1162/CPSY_a_00009
https://doi.org/10.1162/CPSY_a_00009
https://doi.org/10.1162/CPSY_a_00009
https://doi.org/10.1162/CPSY_a_00009
https://pubmed.ncbi.nlm.nih.gov/29400358
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s41598-018-31730-w
https://doi.org/10.1038/s41598-018-31730-w
https://doi.org/10.1038/s41598-018-31730-w
https://doi.org/10.1038/s41598-018-31730-w
https://doi.org/10.1038/s41598-018-31730-w
https://doi.org/10.1038/s41598-018-31730-w
https://doi.org/10.1038/s41598-018-31730-w
https://doi.org/10.1038/s41598-018-31730-w
https://doi.org/10.1038/s41598-018-31730-w
https://doi.org/10.1038/s41598-018-31730-w
https://pubmed.ncbi.nlm.nih.gov/30218084
https://doi.org/10.1016/S0006-3223(02)01866-8
https://doi.org/10.1016/S0006-3223(02)01866-8
https://doi.org/10.1016/S0006-3223(02)01866-8
https://doi.org/10.1016/S0006-3223(02)01866-8
https://doi.org/10.1016/S0006-3223(02)01866-8
https://doi.org/10.1016/S0006-3223(02)01866-8
https://doi.org/10.1016/S0006-3223(02)01866-8
https://doi.org/10.1016/S0006-3223(02)01866-8
https://doi.org/10.1016/S0006-3223(02)01866-8
https://pubmed.ncbi.nlm.nih.gov/12946886
https://doi.org/10.1176/ajp.2006.163.11.1905
https://doi.org/10.1176/ajp.2006.163.11.1905
https://doi.org/10.1176/ajp.2006.163.11.1905
https://doi.org/10.1176/ajp.2006.163.11.1905
https://doi.org/10.1176/ajp.2006.163.11.1905
https://doi.org/10.1176/ajp.2006.163.11.1905
https://doi.org/10.1176/ajp.2006.163.11.1905
https://doi.org/10.1176/ajp.2006.163.11.1905
https://doi.org/10.1176/ajp.2006.163.11.1905
https://doi.org/10.1176/ajp.2006.163.11.1905
https://doi.org/10.1176/ajp.2006.163.11.1905
https://pubmed.ncbi.nlm.nih.gov/17074942
https://doi.org/10.1016/j.neuroimage.2021.118096
https://doi.org/10.1016/j.neuroimage.2021.118096
https://doi.org/10.1016/j.neuroimage.2021.118096
https://doi.org/10.1016/j.neuroimage.2021.118096
https://doi.org/10.1016/j.neuroimage.2021.118096
https://doi.org/10.1016/j.neuroimage.2021.118096
https://doi.org/10.1016/j.neuroimage.2021.118096
https://doi.org/10.1016/j.neuroimage.2021.118096
https://doi.org/10.1016/j.neuroimage.2021.118096
https://doi.org/10.1016/j.neuroimage.2021.118096
https://pubmed.ncbi.nlm.nih.gov/33940149
https://doi.org/10.1111/j.1600-0447.1967.tb05762.x
https://doi.org/10.1111/j.1600-0447.1967.tb05762.x
https://doi.org/10.1111/j.1600-0447.1967.tb05762.x
https://doi.org/10.1111/j.1600-0447.1967.tb05762.x
https://doi.org/10.1111/j.1600-0447.1967.tb05762.x
https://doi.org/10.1111/j.1600-0447.1967.tb05762.x
https://doi.org/10.1111/j.1600-0447.1967.tb05762.x
https://doi.org/10.1111/j.1600-0447.1967.tb05762.x
https://doi.org/10.1111/j.1600-0447.1967.tb05762.x
https://doi.org/10.1111/j.1600-0447.1967.tb05762.x
https://doi.org/10.1111/j.1600-0447.1967.tb05762.x
https://doi.org/10.1111/j.1600-0447.1967.tb05762.x
https://pubmed.ncbi.nlm.nih.gov/5585152

Treatment response prediction in major depression using brain activity

Shahabi, M. S., Shalbaf, A., & Maghsoudi, A. (2021). Prediction of
drug response in major depressive disorder using ensemble of
transfer learning with convolutional neural network based on EEG.
Biocybernetics and Biomedical Engineering, 41(3), 946-959.

Sheline, Y. 1., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi,
S. N., Snyder, A. Z., ... Raichle, M. E. (2009). The default mode
network and self-referential processes in depression. Proceedings
of the National Academy of Sciences, 106(6), 1942-1947.

, PubMed:

Sikora, M., Heffernan, J., Avery, E. T., Mickey, B. J., Zubieta, J.-K., &
Pecifa, M. (2016). Salience network functional connectivity pre-
dicts placebo effects in major depression. Biological Psychiatry:
Cognitive Neuroscience and Neuroimaging, 1(1), 68-76.

, PubMed:

Steffen, A., Nubel, J., Jacobi, F., Batzing, J., & Holstiege, J. (2020).
Mental and somatic comorbidity of depression: A comprehensive
cross-sectional analysis of 202 diagnosis groups using German
nationwide ambulatory claims data. BMC Psychiatry, 20(1), 1-15.

, PubMed:

Stephan, K. E., & Friston, K. J. (2010). Analyzing effective connec-
tivity with functional magnetic resonance imaging. Wiley Inter-
disciplinary Reviews: Cognitive Science, 1(3), 446-459.

, PubMed:

Stephan, K. E., Manjaly, Z. M., Mathys, C. D., Weber, L. A., Paliwal,
S., Gard, T,, ... Petzschner, F. H. (2016). Allostatic self-efficacy: A
metacognitive theory of dyshomeostasis-induced fatigue and
depression. Frontiers in Human Neuroscience, 10, 550.

, PubMed:

Stephan, K. E., Schlagenhauf, F., Huys, Q. J., Raman, S., Aponte,
E. A., Brodersen, K. H., ... Heinz, A. (2017). Computational neu-
roimaging strategies for single patient predictions. Neurolmage,
145, 180-199.

, PubMed:

Stuhrmann, A., Suslow, T., & Dannlowski, U. (2011). Facial emo-
tion processing in major depression: A systematic review of neu-
roimaging findings. Biology of Mood and Anxiety Disorders, 1(1),
1-17. , PubMed:

Sun, H., Jiang, R., Qi, S., Narr, K. L., Wade, B. S., Upston, J., ... Sui,
J. (2020). Preliminary prediction of individual response to
electroconvulsive therapy using whole-brain functional magnetic
resonance imaging data. Neurolmage: Clinical, 26, 102080.

, PubMed:

Symmonds, M., Moran, C. H., Leite, M. 1., Buckley, C., Irani, S. R.,
Stephan, K. E., ... Moran, R. J. (2018). lon channels in EEG:
Isolating channel dysfunction in NMDA receptor antibody
encephalitis. Brain, 141(6), 1691-1702.

, PubMed:

Taylor, J. J., Kurt, H. G., & Anand, A. (2021). Resting state functional
connectivity biomarkers of treatment response in mood disor-
ders: A review. Frontiers in Psychiatry, 12, 565136.

, PubMed:

Tian, S., Sun, Y., Shao, J., Zhang, S., Mo, Z., Liu, X., ... Lu, Q.
(2020). Predicting escitalopram monotherapy response in
depression: The role of anterior cingulate cortex. Human Brain
Mapping, 41(5), 1249-1260.

, PubMed:

Network Neuroscience

Tozzi, L., Goldstein-Piekarski, A. N., Korgaonkar, M. S., &
Williams, L. M. (2020). Connectivity of the cognitive control net-
work during response inhibition as a predictive and response
biomarker in major depression: Evidence from a randomized
clinical trial. Biological Psychiatry, 87(5), 462-472.

, PubMed:

Trivedi, M. H., McGrath, P. )., Fava, M., Parsey, R. V., Kurian, B. T.,
Phillips, M. L., ... Weissman, M. M. (2016). Establishing modera-
tors and biosignatures of antidepressant response in clinical care
(EMBARC): Rationale and design. Journal of Psychiatric Research,
78, 11-23. ,
PubMed:

Tu, Y.-K., Gunnell, D., & Gilthorpe, M. S. (2008). Simpson’s
paradox, Lord’s paradox, and suppression effects are the same
phenomenon—The reversal paradox. Emerging Themes in
Epidemiology, 5(1), 1-9. ,
PubMed:

Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019).
Machine learning algorithm validation with a limited sample
size. PLoS ONE, 14(11), e0224365.

, PubMed:

Vai, B., Bulgarelli, C., Godlewska, B. R., Cowen, P. ]., Benedetti, F.,
& Harmer, C. J. (2016). Fronto-limbic effective connectivity as
possible predictor of antidepressant response to SSRI administra-
tion. European Neuropsychopharmacology, 26(12), 2000-2010.

, PubMed:

Vandeleur, C. L., Fassassi, S., Castelao, E., Glaus, J., Strippoli, M.-P.
F., Lasserre, A. M., ... Preisig, M. (2017). Prevalence and corre-
lates of DSM-5 major depressive and related disorders in the
community. Psychiatry Research, 250, 50-58.

, PubMed:

van den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain
network: A review on resting-state fMRI functional connectivity.
European Neuropsychopharmacology, 20(8), 519-534.

, PubMed:

van der Vinne, N., Vollebregt, M. A., Rush, A. J., Eebes, M., van
Putten, M. J., & Arns, M. (2021). EEG biomarker informed pre-
scription of antidepressants in MDD: A feasibility trial. European
Neuropsychopharmacology, 44, 14-22.

, PubMed:

Van Waarde, J., Scholte, H., Van Oudheusden, L., Verwey, B.,
Denys, D., & Van Wingen, G. (2015). A functional MRI marker
may predict the outcome of electroconvulsive therapy in severe
and treatment-resistant depression. Molecular Psychiatry, 20(5),
609-614. , PubMed:

Varma, S., & Simon, R. (2006). Bias in error estimation when using
cross-validation for model selection. BMC Bioinformatics, 7(1),
1-8. , PubMed:

Varoquaux, G. (2018). Cross-validation failure: Small sample sizes
lead to large error bars. Neurolmage, 180, 68-77.

, PubMed:

Varoquaux, G., Raamana, P. R., Engemann, D. A., Hoyos-Idrobo,
A., Schwartz, Y., & Thirion, B. (2017). Assessing and tuning brain
decoders: Cross-validation, caveats, and guidelines. Neuro-
Image, 145, 166-179.

, PubMed:

1102

%20z AInF 92 uo 3senb Aq 4pd-g£Z00 B UIBU/99Z9502/9901/7/9/4pd-8l01ie/ujeu/npa W j08.Ip//:dny Woly papeojumoq


https://doi.org/10.1016/j.bbe.2021.06.006
https://doi.org/10.1016/j.bbe.2021.06.006
https://doi.org/10.1016/j.bbe.2021.06.006
https://doi.org/10.1016/j.bbe.2021.06.006
https://doi.org/10.1016/j.bbe.2021.06.006
https://doi.org/10.1016/j.bbe.2021.06.006
https://doi.org/10.1016/j.bbe.2021.06.006
https://doi.org/10.1016/j.bbe.2021.06.006
https://doi.org/10.1016/j.bbe.2021.06.006
https://doi.org/10.1016/j.bbe.2021.06.006
https://doi.org/10.1016/j.bbe.2021.06.006
https://doi.org/10.1073/pnas.0812686106
https://doi.org/10.1073/pnas.0812686106
https://doi.org/10.1073/pnas.0812686106
https://doi.org/10.1073/pnas.0812686106
https://doi.org/10.1073/pnas.0812686106
https://doi.org/10.1073/pnas.0812686106
https://doi.org/10.1073/pnas.0812686106
https://doi.org/10.1073/pnas.0812686106
https://doi.org/10.1073/pnas.0812686106
https://pubmed.ncbi.nlm.nih.gov/19171889
https://doi.org/10.1016/j.bpsc.2015.10.002
https://doi.org/10.1016/j.bpsc.2015.10.002
https://doi.org/10.1016/j.bpsc.2015.10.002
https://doi.org/10.1016/j.bpsc.2015.10.002
https://doi.org/10.1016/j.bpsc.2015.10.002
https://doi.org/10.1016/j.bpsc.2015.10.002
https://doi.org/10.1016/j.bpsc.2015.10.002
https://doi.org/10.1016/j.bpsc.2015.10.002
https://doi.org/10.1016/j.bpsc.2015.10.002
https://doi.org/10.1016/j.bpsc.2015.10.002
https://doi.org/10.1016/j.bpsc.2015.10.002
https://doi.org/10.1016/j.bpsc.2015.10.002
https://pubmed.ncbi.nlm.nih.gov/26709390
https://doi.org/10.1186/s12888-020-02546-8
https://doi.org/10.1186/s12888-020-02546-8
https://doi.org/10.1186/s12888-020-02546-8
https://doi.org/10.1186/s12888-020-02546-8
https://doi.org/10.1186/s12888-020-02546-8
https://doi.org/10.1186/s12888-020-02546-8
https://doi.org/10.1186/s12888-020-02546-8
https://doi.org/10.1186/s12888-020-02546-8
https://doi.org/10.1186/s12888-020-02546-8
https://doi.org/10.1186/s12888-020-02546-8
https://pubmed.ncbi.nlm.nih.gov/32228541
https://doi.org/10.1002/wcs.58
https://doi.org/10.1002/wcs.58
https://doi.org/10.1002/wcs.58
https://doi.org/10.1002/wcs.58
https://doi.org/10.1002/wcs.58
https://doi.org/10.1002/wcs.58
https://doi.org/10.1002/wcs.58
https://doi.org/10.1002/wcs.58
https://doi.org/10.1002/wcs.58
https://pubmed.ncbi.nlm.nih.gov/21209846
https://doi.org/10.3389/fnhum.2016.00550
https://doi.org/10.3389/fnhum.2016.00550
https://doi.org/10.3389/fnhum.2016.00550
https://doi.org/10.3389/fnhum.2016.00550
https://doi.org/10.3389/fnhum.2016.00550
https://doi.org/10.3389/fnhum.2016.00550
https://doi.org/10.3389/fnhum.2016.00550
https://doi.org/10.3389/fnhum.2016.00550
https://doi.org/10.3389/fnhum.2016.00550
https://doi.org/10.3389/fnhum.2016.00550
https://pubmed.ncbi.nlm.nih.gov/27895566
https://doi.org/10.1016/j.neuroimage.2016.06.038
https://doi.org/10.1016/j.neuroimage.2016.06.038
https://doi.org/10.1016/j.neuroimage.2016.06.038
https://doi.org/10.1016/j.neuroimage.2016.06.038
https://doi.org/10.1016/j.neuroimage.2016.06.038
https://doi.org/10.1016/j.neuroimage.2016.06.038
https://doi.org/10.1016/j.neuroimage.2016.06.038
https://doi.org/10.1016/j.neuroimage.2016.06.038
https://doi.org/10.1016/j.neuroimage.2016.06.038
https://doi.org/10.1016/j.neuroimage.2016.06.038
https://doi.org/10.1016/j.neuroimage.2016.06.038
https://pubmed.ncbi.nlm.nih.gov/27346545
https://doi.org/10.1186/2045-5380-1-10
https://doi.org/10.1186/2045-5380-1-10
https://doi.org/10.1186/2045-5380-1-10
https://doi.org/10.1186/2045-5380-1-10
https://doi.org/10.1186/2045-5380-1-10
https://doi.org/10.1186/2045-5380-1-10
https://doi.org/10.1186/2045-5380-1-10
https://doi.org/10.1186/2045-5380-1-10
https://doi.org/10.1186/2045-5380-1-10
https://doi.org/10.1186/2045-5380-1-10
https://pubmed.ncbi.nlm.nih.gov/22738433
https://doi.org/10.1016/j.nicl.2019.102080
https://doi.org/10.1016/j.nicl.2019.102080
https://doi.org/10.1016/j.nicl.2019.102080
https://doi.org/10.1016/j.nicl.2019.102080
https://doi.org/10.1016/j.nicl.2019.102080
https://doi.org/10.1016/j.nicl.2019.102080
https://doi.org/10.1016/j.nicl.2019.102080
https://doi.org/10.1016/j.nicl.2019.102080
https://doi.org/10.1016/j.nicl.2019.102080
https://doi.org/10.1016/j.nicl.2019.102080
https://pubmed.ncbi.nlm.nih.gov/31735637
https://doi.org/10.1093/brain/awy107
https://doi.org/10.1093/brain/awy107
https://doi.org/10.1093/brain/awy107
https://doi.org/10.1093/brain/awy107
https://doi.org/10.1093/brain/awy107
https://doi.org/10.1093/brain/awy107
https://doi.org/10.1093/brain/awy107
https://doi.org/10.1093/brain/awy107
https://doi.org/10.1093/brain/awy107
https://pubmed.ncbi.nlm.nih.gov/29718139
https://doi.org/10.3389/fpsyt.2021.565136
https://doi.org/10.3389/fpsyt.2021.565136
https://doi.org/10.3389/fpsyt.2021.565136
https://doi.org/10.3389/fpsyt.2021.565136
https://doi.org/10.3389/fpsyt.2021.565136
https://doi.org/10.3389/fpsyt.2021.565136
https://doi.org/10.3389/fpsyt.2021.565136
https://doi.org/10.3389/fpsyt.2021.565136
https://doi.org/10.3389/fpsyt.2021.565136
https://pubmed.ncbi.nlm.nih.gov/33841196
https://doi.org/10.1002/hbm.24872
https://doi.org/10.1002/hbm.24872
https://doi.org/10.1002/hbm.24872
https://doi.org/10.1002/hbm.24872
https://doi.org/10.1002/hbm.24872
https://doi.org/10.1002/hbm.24872
https://doi.org/10.1002/hbm.24872
https://doi.org/10.1002/hbm.24872
https://doi.org/10.1002/hbm.24872
https://pubmed.ncbi.nlm.nih.gov/31758634
https://doi.org/10.1016/j.biopsych.2019.08.005
https://doi.org/10.1016/j.biopsych.2019.08.005
https://doi.org/10.1016/j.biopsych.2019.08.005
https://doi.org/10.1016/j.biopsych.2019.08.005
https://doi.org/10.1016/j.biopsych.2019.08.005
https://doi.org/10.1016/j.biopsych.2019.08.005
https://doi.org/10.1016/j.biopsych.2019.08.005
https://doi.org/10.1016/j.biopsych.2019.08.005
https://doi.org/10.1016/j.biopsych.2019.08.005
https://doi.org/10.1016/j.biopsych.2019.08.005
https://doi.org/10.1016/j.biopsych.2019.08.005
https://pubmed.ncbi.nlm.nih.gov/31601424
https://doi.org/10.1016/j.jpsychires.2016.03.001
https://doi.org/10.1016/j.jpsychires.2016.03.001
https://doi.org/10.1016/j.jpsychires.2016.03.001
https://doi.org/10.1016/j.jpsychires.2016.03.001
https://doi.org/10.1016/j.jpsychires.2016.03.001
https://doi.org/10.1016/j.jpsychires.2016.03.001
https://doi.org/10.1016/j.jpsychires.2016.03.001
https://doi.org/10.1016/j.jpsychires.2016.03.001
https://doi.org/10.1016/j.jpsychires.2016.03.001
https://doi.org/10.1016/j.jpsychires.2016.03.001
https://doi.org/10.1016/j.jpsychires.2016.03.001
https://pubmed.ncbi.nlm.nih.gov/27038550
https://doi.org/10.1186/1742-7622-5-2
https://doi.org/10.1186/1742-7622-5-2
https://doi.org/10.1186/1742-7622-5-2
https://doi.org/10.1186/1742-7622-5-2
https://doi.org/10.1186/1742-7622-5-2
https://doi.org/10.1186/1742-7622-5-2
https://doi.org/10.1186/1742-7622-5-2
https://doi.org/10.1186/1742-7622-5-2
https://doi.org/10.1186/1742-7622-5-2
https://doi.org/10.1186/1742-7622-5-2
https://pubmed.ncbi.nlm.nih.gov/18211676
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1371/journal.pone.0224365
https://pubmed.ncbi.nlm.nih.gov/31697686
https://doi.org/10.1016/j.euroneuro.2016.09.640
https://doi.org/10.1016/j.euroneuro.2016.09.640
https://doi.org/10.1016/j.euroneuro.2016.09.640
https://doi.org/10.1016/j.euroneuro.2016.09.640
https://doi.org/10.1016/j.euroneuro.2016.09.640
https://doi.org/10.1016/j.euroneuro.2016.09.640
https://doi.org/10.1016/j.euroneuro.2016.09.640
https://doi.org/10.1016/j.euroneuro.2016.09.640
https://doi.org/10.1016/j.euroneuro.2016.09.640
https://doi.org/10.1016/j.euroneuro.2016.09.640
https://doi.org/10.1016/j.euroneuro.2016.09.640
https://pubmed.ncbi.nlm.nih.gov/27756525
https://doi.org/10.1016/j.psychres.2017.01.060
https://doi.org/10.1016/j.psychres.2017.01.060
https://doi.org/10.1016/j.psychres.2017.01.060
https://doi.org/10.1016/j.psychres.2017.01.060
https://doi.org/10.1016/j.psychres.2017.01.060
https://doi.org/10.1016/j.psychres.2017.01.060
https://doi.org/10.1016/j.psychres.2017.01.060
https://doi.org/10.1016/j.psychres.2017.01.060
https://doi.org/10.1016/j.psychres.2017.01.060
https://doi.org/10.1016/j.psychres.2017.01.060
https://doi.org/10.1016/j.psychres.2017.01.060
https://pubmed.ncbi.nlm.nih.gov/28142066
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://pubmed.ncbi.nlm.nih.gov/20471808
https://doi.org/10.1016/j.euroneuro.2020.12.005
https://doi.org/10.1016/j.euroneuro.2020.12.005
https://doi.org/10.1016/j.euroneuro.2020.12.005
https://doi.org/10.1016/j.euroneuro.2020.12.005
https://doi.org/10.1016/j.euroneuro.2020.12.005
https://doi.org/10.1016/j.euroneuro.2020.12.005
https://doi.org/10.1016/j.euroneuro.2020.12.005
https://doi.org/10.1016/j.euroneuro.2020.12.005
https://doi.org/10.1016/j.euroneuro.2020.12.005
https://doi.org/10.1016/j.euroneuro.2020.12.005
https://doi.org/10.1016/j.euroneuro.2020.12.005
https://pubmed.ncbi.nlm.nih.gov/33509659
https://doi.org/10.1038/mp.2014.78
https://doi.org/10.1038/mp.2014.78
https://doi.org/10.1038/mp.2014.78
https://doi.org/10.1038/mp.2014.78
https://doi.org/10.1038/mp.2014.78
https://doi.org/10.1038/mp.2014.78
https://doi.org/10.1038/mp.2014.78
https://doi.org/10.1038/mp.2014.78
https://doi.org/10.1038/mp.2014.78
https://pubmed.ncbi.nlm.nih.gov/25092248
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1186/1471-2105-7-91
https://pubmed.ncbi.nlm.nih.gov/16504092
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://pubmed.ncbi.nlm.nih.gov/28655633
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://pubmed.ncbi.nlm.nih.gov/27989847

Treatment response prediction in major depression using brain activity

Williams, L. M., Korgaonkar, M. S., Song, Y. C., Paton, R., Eagles, S.,
Goldstein-Piekarski, A., ... Etkin, A. (2015). Amygdala reactivity
to emotional faces in the prediction of general and medication-
specific responses to antidepressant treatment in the randomized
iSPOT-D trial. Neuropsychopharmacology, 40(10), 2398-2408.

, PubMed:

Williams, L. M., Rush, A. J., Koslow, S. H., Wisniewski, S. R.,
Cooper, N. J., Nemeroff, C. B., ... Gordon, E. (2011). International
study to predict optimized treatment for depression (iSPOT-D), a
randomized clinical trial: Rationale and protocol. Trials, 12(1),
1-17. , PubMed:

Wright, R. E. (1995). Logistic regression. In L. G. Grimm & P. R.
Yarnold (Eds.), Reading and understanding multivariate statistics
(pp- 217-244). American Psychological Association.

Wu, C.-T., Dillon, D. G., Hsu, H.-C., Huang, S., Barrick, E., & Liu,
Y.-H. (2018). Depression detection using relative EEG power
induced by emotionally positive images and a conformal kernel
support vector machine. Applied Science, 8(8), 1244.

Network Neuroscience

Wu, W., Zhang, Y., Jiang, J., Lucas, M. V., Fonzo, G. A., Rolle, C. E.,
... Etkin, A. (2020). An electroencephalographic signature pre-
dicts antidepressant response in major depression. Nature Bio-
technology, 38(4), 439-447.

, PubMed:

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over expla-
nation in psychology: Lessons from machine learning. Perspec-
tives on Psychological Science, 12(6), 1100-1122.

, PubMed:

Zhdanov, A., Atluri, S., Wong, W., Vaghei, Y., Daskalakis, Z. J.,
Blumberger, D. M., ... Farzan, F. (2020). Use of machine learning
for predicting escitalopram treatment outcome from electroen-
cephalography recordings in adult patients with depression.
JAMA Network Open, 3(1), e1918377.

, PubMed:

Zimmerman, M., McGlinchey, J. B., Posternak, M. A., Friedman,
M., Attiullah, N., & Boerescu, D. (2006). How should remission
from depression be defined? The depressed patient’s perspective.
American Journal of Psychiatry, 163(1), 148-150.

, PubMed:

1103

%20z AInF 92 uo 3senb Aq 4pd-g£Z00 B UIBU/99Z9502/9901/7/9/4pd-8l01ie/ujeu/npa W j08.Ip//:dny Woly papeojumoq


https://doi.org/10.1038/npp.2015.89
https://doi.org/10.1038/npp.2015.89
https://doi.org/10.1038/npp.2015.89
https://doi.org/10.1038/npp.2015.89
https://doi.org/10.1038/npp.2015.89
https://doi.org/10.1038/npp.2015.89
https://doi.org/10.1038/npp.2015.89
https://doi.org/10.1038/npp.2015.89
https://doi.org/10.1038/npp.2015.89
https://pubmed.ncbi.nlm.nih.gov/25824424
https://doi.org/10.1186/1745-6215-12-4
https://doi.org/10.1186/1745-6215-12-4
https://doi.org/10.1186/1745-6215-12-4
https://doi.org/10.1186/1745-6215-12-4
https://doi.org/10.1186/1745-6215-12-4
https://doi.org/10.1186/1745-6215-12-4
https://doi.org/10.1186/1745-6215-12-4
https://doi.org/10.1186/1745-6215-12-4
https://doi.org/10.1186/1745-6215-12-4
https://doi.org/10.1186/1745-6215-12-4
https://pubmed.ncbi.nlm.nih.gov/21208417
https://doi.org/10.3390/app8081244
https://doi.org/10.3390/app8081244
https://doi.org/10.3390/app8081244
https://doi.org/10.3390/app8081244
https://doi.org/10.3390/app8081244
https://doi.org/10.3390/app8081244
https://doi.org/10.3390/app8081244
https://doi.org/10.1038/s41587-019-0397-3
https://doi.org/10.1038/s41587-019-0397-3
https://doi.org/10.1038/s41587-019-0397-3
https://doi.org/10.1038/s41587-019-0397-3
https://doi.org/10.1038/s41587-019-0397-3
https://doi.org/10.1038/s41587-019-0397-3
https://doi.org/10.1038/s41587-019-0397-3
https://doi.org/10.1038/s41587-019-0397-3
https://doi.org/10.1038/s41587-019-0397-3
https://doi.org/10.1038/s41587-019-0397-3
https://pubmed.ncbi.nlm.nih.gov/32042166
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1177/1745691617693393
https://pubmed.ncbi.nlm.nih.gov/28841086
https://doi.org/10.1001/jamanetworkopen.2019.18377
https://doi.org/10.1001/jamanetworkopen.2019.18377
https://doi.org/10.1001/jamanetworkopen.2019.18377
https://doi.org/10.1001/jamanetworkopen.2019.18377
https://doi.org/10.1001/jamanetworkopen.2019.18377
https://doi.org/10.1001/jamanetworkopen.2019.18377
https://doi.org/10.1001/jamanetworkopen.2019.18377
https://doi.org/10.1001/jamanetworkopen.2019.18377
https://doi.org/10.1001/jamanetworkopen.2019.18377
https://pubmed.ncbi.nlm.nih.gov/31899530
https://doi.org/10.1176/appi.ajp.163.1.148
https://doi.org/10.1176/appi.ajp.163.1.148
https://doi.org/10.1176/appi.ajp.163.1.148
https://doi.org/10.1176/appi.ajp.163.1.148
https://doi.org/10.1176/appi.ajp.163.1.148
https://doi.org/10.1176/appi.ajp.163.1.148
https://doi.org/10.1176/appi.ajp.163.1.148
https://doi.org/10.1176/appi.ajp.163.1.148
https://doi.org/10.1176/appi.ajp.163.1.148
https://doi.org/10.1176/appi.ajp.163.1.148
https://doi.org/10.1176/appi.ajp.163.1.148
https://pubmed.ncbi.nlm.nih.gov/16390903

	Computational approaches to treatment response prediction in major depression using brain activ.....

