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A B S T R A C T   

Bringing precision to the understanding and treatment of mental disorders requires instruments for studying 
clinically relevant individual differences. One promising approach is the development of computational assays: 
integrating computational models with cognitive tasks to infer latent patient-specific disease processes in brain 
computations. While recent years have seen many methodological advancements in computational modelling 
and many cross-sectional patient studies, much less attention has been paid to basic psychometric properties 
(reliability and construct validity) of the computational measures provided by the assays. In this review, we 
assess the extent of this issue by examining emerging empirical evidence. We find that many computational 
measures suffer from poor psychometric properties, which poses a risk of invalidating previous findings and 
undermining ongoing research efforts using computational assays to study individual (and even group) differ-
ences. We provide recommendations for how to address these problems and, crucially, embed them within a 
broader perspective on key developments that are needed for translating computational assays to clinical 
practice.   

1. Introduction 

Computational psychiatry aims to bring precision to the under-
standing and treatment of mental disorders (Yip et al., 2022; Huys et al., 
2021; Hauser et al., 2022). This requires developing tools that can 
capture clinically relevant individual differences. One of the main ap-
proaches to this end is the development of computational assays, which 
combine cognitive tasks with computational models to infer 
patient-specific disease processes from behavioral or brain data (Ste-
phan and Mathys, 2014). The models are constructed to approximate the 
underlying neurocomputational mechanisms and are generally fit to 
data from tasks that are specifically designed to probe symptom-relevant 
cognitive functions. This provides various computational measures, 
including parameter estimates (e.g., learning rate, prior precision) as 
well as other dynamic variables (e.g., trial-by-trial prediction errors and 
beliefs) that aim to characterize the latent computational processes 
shaping brain activity and behavior. The hope is that these 

computational measures would capture clinically relevant individual 
differences, which could open the door for a wide array of applications, 
ranging from computational phenotyping to treatment response pre-
diction to the development of new treatments and treatment targets 
(Paulus et al., 2016; Patzelt et al., 2018; Yip et al., 2022; Hauser et al., 
2022). 

Many methodological advancements have been made towards ful-
filling these goals, particularly in the areas of model development, 
model fitting, and model comparison (e.g., Stephan et al., 2017; Frässle 
et al., 2021; Smith et al., 2021a). However, basic psychometric prop-
erties (reliability and construct validity) of computational measures have 
received much less attention (Browning et al., 2020; Paulus et al., 2016). 
Many studies have investigated which computational measures are 
associated with clinical ones without knowing the reliability and 
construct validity of these measures (Fig. 1). If the measures are not 
reliable enough, spurious associations become more likely than true 
associations (Hedge et al., 2018). If there is an unrecognized lack of 
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construct validity, it leads to misinterpretation of what the measured 
individual or group differences mean (Yarkoni, 2022). 

This is particularly concerning in the context of recent work showing 
that many commonly used computerized tasks in cognitive sciences, 
while showing replicable group effects, are not reliable enough for 
studying individual differences (Rodebaugh et al., 2016; Hedge et al., 
2018; Enkavi et al., 2019; Elliott et al., 2020; Kennedy et al., 2022; 
Nitsch et al., 2022). Furthermore, the validity of many tasks has also 
been challenged, with studies reporting a lack of correlations among 
different measures (i.e., different cognitive tasks, self-report) that are 
meant to capture the same constructs, such as cognitive control (Saun-
ders et al., 2018; Enkavi et al., 2019; Eisenberg et al., 2019; Gärtner and 
Strobel, 2021; Friedman and Gustavson, 2022), risk preference (Pedroni 
et al., 2017; Buelow and Barnhart, 2018; Frey et al., 2017), distress 
tolerance (McHugh et al., 2011), reinforcement learning (RL) (Eckstein 
et al., 2021, 2022), reliance on visual priors (Grzeczkowski et al., 2017, 
2018; Tulver et al., 2019), or positive and negative valence (Peng et al., 
2021). Taken together, these results call for a closer examination of 
reliability and validity of assays in computational psychiatry (Paulus 
et al., 2016; Hitchcock et al., 2017; Hedge et al., 2020; Enkavi and 
Poldrack, 2021). 

The main goal of this review is to provide a critical assessment of the 
psychometric properties of computational assays, considering the 
unique challenges and opportunities that computational methods bring 
to the table. A more general goal is to provide a broader perspective on 
milestones towards clinical applicability, clarify key concepts, and 
suggest a natural prioritization of existing subproblems (Fig. 1). A meta 
goal here is to encourage viewing current psychometric issues through 
the prism of long-term clinical translation, so as to facilitate finding 
more globally optimal ways to address current challenges and to make 
research more efficient. 

Given its primacy, the first and largest part of the review focuses on 
reliability of computational assays, where we review emerging empir-
ical findings from computational studies. We then turn to construct 
validity, where (due to a shortage of computational studies) we pri-
marily focus on broader literature investigating behavioral task mea-
sures and consider the implications it has for testing computational 
accounts of mental disorders. Finally, we briefly discuss the intrinsic 
limitations of cross-sectional clinical validity studies and make a case for 
the importance of focusing on predictive and longitudinal validity, as 
well as the need to make the assays more efficient and less burdensome. 

2. What is reliability? 

Reliability of a measurement is the degree to which it yields similar 
results when repeated under equivalent conditions (Cook and Beckman, 
2006; Mokkink et al., 2010). In other words, it refers to how precisely we 
can measure what we want to measure. If an instrument is not suffi-
ciently reliable (i.e., it is too imprecise), that undermines all subsequent 
research goals from construct validity to clinical utility (Fig. 1). 

Reliability measures can have different names depending on the 
measurement protocol. Test-retest reliability evaluates the agreement of 
measurements obtained over repeated administrations of the same in-
strument to the same individuals. Internal consistency, such as split-half 
reliability is concerned with consistency among the different parts of the 
instrument itself, such as responses on similar trials in a task (e.g., by 
comparing odd trials vs. even trials) or on similar items in a question-
naire. Inter-rater reliability refers to the agreement of ratings between 
different human raters (e.g., in clinician-rated assessments). Parallel 
form reliability refers to consistency between two interchangeable ver-
sions or ways of administering the instrument (e.g., lab-based vs. online- 
based task completion). In this review, our primary focus will be test- 
retest reliability of behavioral and computational measures of task 
performance. We will also briefly comment on test-retest reliability of 
self-report questionnaires and inter-rater reliability of clinical 
assessments. 

The most widely used reliability index for continuous variables is 
intraclass correlation coefficient (ICC) (Fleiss, 2011; Koo and Li, 2016; 
Liljequist et al., 2019). ICC is the ratio of between-individual variance to 
total variance: 

ICC =
Variance between individuals

Variance between individuals + Variance between sessions
+ Error variance

(1) 

Note that the partitioning the variance in this way already reflects 
that reliability of a measurement might be low if (1) there is too much 
variance between sessions, (2) there is too much measurement error, 
and (3) there is too little between-individual variance. We will unpack 
these factors in detail throughout the paper. 

There are two definitions of the ICC for test-retest or inter-rater 
reliability: agreement ICC provides an estimate of absolute agreement 
or concordance between the measurements and does not tolerate any 
systematic errors, while consistency ICC allows for a systematic offset 
error (but not scaling factor error) between the measurements.1 For 
comparison, Pearson correlation coefficient estimates only a linear 
relationship between measurements and is not sensitive to any system-
atic errors, making it less suitable as a measure of reliability (Koo and Li, 
2016). As we will see later, however, many studies still use Pearson or 
even rank correlations to measure reliability (Table 1). 

ICC is generally described by using labels poor, fair/moderate, good, 
and excellent. How this maps to the actual values differs depending on 
whose guidelines are being followed. Fleiss (2011) proposed the 
different brackets to be: < 0.4 (poor), 0.4–0.59 (fair), 0.6–0.74 (good), 
and > 0.75 (excellent); while Koo and Li (2016) proposed more con-
servative brackets: < 0.5 (poor), 0.5–0.75 (moderate), 0.75–0.9 (good), 
and > 0.9 (excellent). Both of these labelling guidelines are for the most 
part arbitrary, and studies reviewed here chose one or the other. For 
consistency we will adopt the more conservative option (Koo and Li, 
2016) throughout the review, however, we suggest treating these as 
ordinal labels and suspending semantic interpretations for the time 
being. For example, “good” should be read as being better than “mod-
erate” or as indicating a certain range of ICC values, but we should be 
careful not to conclude that it means “good enough for any further 
analysis or clinical applications”, as it might not be (see section 6 for 
further discussion). 

3. Reliability of cognitive tasks 

Despite its importance, so far relatively little effort has gone into 
investigating reliability of commonly used cognitive tasks in computa-
tional psychiatry (Table 1). This might be due to a false assumption that 
a demonstration of group effects (e.g., evoked by different task condi-
tions) in a task qualifies it to study individual differences in these effects. 
Quite counterintuitively, tasks that evoke robust group effects tend to 
have low reliability making them less suitable for studying individual 
differences (Weir, 2005; Cooper et al., 2017; Hedge et al., 2018). That is 
because robust group effects require low between-individual variability, 
while reliability - all else being equal - improves with higher 
between-individual variability (Eq. (1)). A recent study by Enkavi et al. 
(2019) has found the median test-retest reliability across a wide range of 
established self-regulation tasks to be very poor (ICC = 0.31), well below 
the median reliability of self-report questionnaires assessing 
self-regulation (ICC = 0.67). Similar issues have been found in 
task-based fMRI research. A recent meta-analysis of 90 studies found 
mean reliability of BOLD response across many common tasks to be poor 
(ICC = 0.397), and across 11 tasks used within the Human Connectome 
Project and the Dunedin Study to be similarly poor (ICC = 0.067 −

1 note, when considering a linear relationship between the measurements, x2 
= ax1 + b, scaling and offset factors are a and b, respectively 
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0.485) (Elliott et al., 2020). Recent emerging evidence suggests that 
many tasks used in computational psychiatry might have poor reliability 
as well (Table 1). 

3.1. Reliability and task design variability 

First and foremost, these findings suggest that if reliability is not 
deliberately optimized for, it will tend to be low. Reliability can be 
affected by multiple experimental design factors: the number of trials, 
the duration of inter-stimulus intervals, the number of practice trials, 
time constrains, overall task difficulty (leading to ceiling or floor ef-
fects), the instructions given before the task, or even the population it is 
tested in, etc. (Henderson et al., 2012; Hitchcock et al., 2017; Cooper 
et al., 2017; McLean et al., 2018; Plummer et al., 2015; Zorowitz and 
Niv, 2023). This also means that different versions of tasks that are often 
referred to by the same name (e.g., Go/No-Go task) can have very 
different reliabilities, depending on the details of implementation. 
Because of that, often used statements in the form of ‘task X is (un) 
reliable’ might be not very informative, as it generally speaks to a spe-
cific implementation of that task. This is particularly relevant in 
computational psychiatry research, where it is common to adapt task 
design on study-by-study basis to address a particular research question 
about a particular clinical group (Nair et al., 2020). Such practice makes 
it difficult to rely on previous findings for ensuring reliability and calls 
for making reliability reporting a routine practice (Parsons et al., 2019). 
Another helpful practice would be to make the task code accessible to 
other researchers: this would ensure that no important design decisions 
are left unmentioned and would enable a much more detail comparison 
among task designs and their effects on reliability. 

3.2. Reliability and different ways of deriving task measures 

‘Task X is (un)reliable’ can be a misleading shorthand for another 
reason. First of all, even within the same task, some measures can have 
low and some can have high reliability (e.g., Loosen et al., 2022; 
Waltmann et al., 2022); the reliable ones could still be used for further 
analysis. Second of all, reliability of measures depends not only on task 
parameters, but also on how such measures are derived. The typical 
measures involve simple summary statistics (e.g., averaging reaction 
times or accuracy across trials) and difference scores (e.g., the differ-
ences of averages across conditions). Differences scores tend to have 
lower reliability as they often mask a portion of between-subject vari-
ance (Cronbach and Furby, 1970; Hedge et al., 2018; Draheim et al., 
2019). Relying on measures that do not involve difference scores could 
thus yield better reliability. However, this might make it more difficult 
to test certain hypotheses that are framed in terms of differential 

performance across conditions. 
Simple averaging across trials has its problems too as it implicitly 

assumes no uncertainty in such averages by ignoring trial-level variance 
(Rodebaugh et al., 2016; Haines et al., 2020). This can be addressed by 
estimating the measures of each individual using linear mixed models 
that take into account the variance across multiple levels - trial, indi-
vidual, group, etc. (Rouder and Haaf, 2019; Chen et al., 2021). This 
approach exploits the hierarchical properties of the data across these 
levels. For example, in addition to accounting for trial-level variance, it 
also uses individual-level estimates to compute group priors, which in 
turn regularize individual-level estimates. This leads to more precise and 
thus more reliable estimates of the measures, especially, when the 
number of trials is low (Rouder and Haaf, 2019; Chen et al., 2021). The 
mixed model approach can even be extended to incorporate both ses-
sions by assuming the measures to be drawn from a multivariate dis-
tribution. The correlation in parameter values between sessions (i.e., 
their reliability) can then be obtained from the covariance matrix; this 
technique has been shown to further improve reliability estimates 
(Rouder and Haaf, 2019; Haines et al., 2020; Snijder et al., 2022; Litt-
man et al., 2022). 

4. Can modelling task behavior provide more reliable measures? 

Regardless of the methods used, behavioral measures remain rather 
distant proxies of the underlying cognitive processes and thus are not 
ideal for capturing individual differences in these processes (Haines 
et al., 2020). An alternative is to model task behavior with generative 
models that explicitly specify the underlying cognitive process (e.g., RL, 
Bayesian inference), providing computational measures (parameter es-
timates and other dynamic variables) of this process. The resulting in-
dividual differences in these computational measures could be expected 
to be much closer to the theoretical constructs and processes of interest 
(Huys et al., 2016). Furthermore, cognitive modelling can easily address 
the other issues affecting the conventional measures: it can provide a 
more complete summary of the data (e.g., by jointly accounting for 
choice and reaction time data), it can extract valuable information from 
trail-level variability, especially if it relates to learning (e.g., with 
trial-by-trial modelling approaches), and in many cases it circumvents 
the need to use difference scores (Draheim et al., 2019). All of this 
should allow computationally derived measures to have higher 
reliability. 

However, recent computational studies explicitly investigating this 
idea paint a more complicated picture (Table 1). Many studies report 
poor to moderate reliabilities of parameter estimates. In many cases it is 
similar to or even lower than the conventional summary statistics 
measures (Pike et al., 2022; Shahar et al., 2019; Smith et al., 2021b; 

Fig. 1. A hierarchical breakdown of different chal-
lenges facing computational assays. Despite their pri-
macy, reliability and construct validity of many 
computational assays remain largely unexamined. Most 
research tends to focus on clinical validity by looking for 
associations between computational and clinical measures. 
However, for such analyses to be meaningful, it is crucial to 
first ensure that the computational measures have suffi-
cient reliability and construct validity. Furthermore, clin-
ical validity studies usually focus on cross-sectional 
associations, which does not by itself provide actionable 
insights. To get closer to clinical utility it is necessary to 
study predictive and longitudinal validity. The final steps 
in clinical translation will require the demonstration of 
clinical efficacy in randomized controlled trials and clinical 
utility in a range of real-world settings.   
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Table 1 
Studies investigating test-retest reliability of computational assay measures. Note that ‘joint’ next to reliability measures refers to modelling the two testing 
sessions jointly (using bivariate distributions). ICC - intraclass correlation; we also indicate ICC definition with subscripts a and c for absolute and consistency, 
respectively, if it is reported. r - Pearson’s correlation coefficient, ρ - Spearman’s rank correlation coefficient, CCC - concordance correlation coefficient, RL - rein-
forcement learning, DDM - drift-diffusion model; ML - maximum likelihood, MAP - maximum a posteriori, EB - empirical Bayes, HC - healthy controls, MDD - major 
depressive disorder, OUD - opioid use disorder, SUD - substance use disorder.  

(continued on next page) 
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Table 1 (continued ) 

(continued on next page) 
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Table 1 (continued ) 

(continued on next page) 
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Loosen et al., 2022; Waltmann et al., 2022; Hitchcock et al., 2022b). In 
other cases it offers only a modest improvement over summary statistics 
(Price et al., 2019; Mkrtchian et al., 2023; Moutoussis et al., 2018a; 
Chung et al., 2017; Weigard et al., 2021), and rarely a substantial 
improvement (Sullivan-Toole et al., 2022; Xu and Stocco, 2021; Smith 
et al., 2022). Still, some studies achieved better reliability than others 
and it is important to consider the factors underlying that. Below we 
cover what we deem to be the most important factors, but see a recent 
review by Zorowitz and Niv (2023) for a complementary perspective. 

4.1. Hierarchical model fitting methods can improve reliability 

One of the clearest factors affecting reliability is the approach used 
for model fitting (Brown et al., 2020; Waltmann et al., 2022). Similar to 
the idea of using mixed models to account for uncertainty at different 
levels, hierarchical model fitting with empirical Bayes (EB) - where the 
parameter estimates at the individual level are informed by the group 
statistics and vice versa - can lead to better parameter estimates (Huys 
et al., 2011, 2012; Wiecki et al., 2013; Ahn et al., 2013; Katahira, 2016). 
This contrasts to maximum likelihood estimation (ML), where parame-
ters of each individual are estimated separately and the uncertainty of 
such estimates is ignored. Using a RL model of the two-stage task, Brown 
et al. (2020) found EB to provide more reliable estimates (r = 0.39 −

0.46) compared to ML (r = 0.13 − 0.40). Similarly, Waltmann et al. 
(2022) found reliability of RL parameter estimates in the Probabilistic 
Reversal Learning Task to go from ICC = 0.20 using ML to ICC 
= 0.42 − 0.64 using EB. While these results highlight the benefits of 
using EB for parameter estimation, the resulting reliabilities are still 
rather poor. Moreover, many of the studies reporting poor reliabilities 
are already using EB methods (Moutoussis et al., 2018a; Shahar et al., 
2019; Brown et al., 2020; Pike et al., 2022; Mkrtchian et al., 2023). 

Just like for the behavioral measures, the hierarchical approach can 
be further extended to incorporate both sessions by assuming the 
parameter estimates to be drawn from a multivariate distribution 
(Brown et al., 2020; Sullivan-Toole et al., 2022; Waltmann et al., 2022; 
Pike et al., 2022; Mkrtchian et al., 2023). Using this method, Brown et al. 
(2020) and Waltmann et al. (2022) were able to further improve the 
reliability of parameter estimates, reaching r = 0.72 − 0.89 and 
r = 0.74 − 0.86, respectively. Similar improvements were reported by 

Sullivan-Toole et al. (2022) for a RL model of Iowa Gambling Task, with 
reliabilities increasing from r = 0.36 − 0.65 when modelling the ses-
sions separately to r = 0.64 − 0.82 when modelling them jointly. A 
study by Mkrtchian et al. (2023) reported similar improvements for two 
other assays: for RL model of restless four-armed bandit task reliability 
increased from r = 0.05 − 0.64 to r = − 0.01 − 0.85, while for a pros-
pect theory model of a gambling task it increased from r = 0.72 − 0.84 
to r = 0.87 − 0.91. Furthermore, using simulated data with known 
correlations of parameters between two sessions, Brown et al. (2020) 
and Waltmann et al. (2022) have demonstrated that this approach 
provides accurate estimates of correlation between the sessions, while 
modelling the sessions separately tends to underestimate this correla-
tion. This means that joint modelling of the two sessions provides true 
improvements in reliability (rather than artificially inflating reliability 
by biasing values across sessions to be more similar). 

This method, of course, is applicable only when there is data for more 
than one session but it does not help obtain better parameter estimates 
from a single session. Another caveat is that the reliability estimate 
derived from the covariance matrix is Pearson correlation, which is not 
sensitive to systematic errors and thus is not optimal for measuring 
reliability. Moreover, in their simulation analysis Waltmann et al. 
(2022) also showed that unlike reliability estimates derived from the 
covariance matrix, reliability computed directly from jointly estimated 
parameter values was positively biased. This raises the question whether 
using these point estimates in any subsequent analysis might introduce 
biases too. 

4.2. Model simulations can provide an upper bound on reliability 

A major benefit of computational modelling is that it allows for in 
silico analyses (Palminteri et al., 2017; Wilson and Collins, 2019). Many 
aspects of the task design (e.g., trial number, outcome probabilities, 
etc.), model properties (e.g., collinearity, complexity), and model fitting 
procedure (eg., ML vs EB), can be systematically studied and optimized 
through model simulations. Of particular interest in the context of 
reliability is parameter recovery analysis. Parameter recovery involves 
first simulating task behavior with a range of model parameter values 
and then fitting the same model to the simulated data. The correspon-
dence between the true and the recovered model parameters indicates 

Table 1 (continued ) 

(Chung et al. (2017), Moutoussis et al. (2018a), Price et al. (2019), Shahar et al. (2019), Brown et al. (2020), Konova et al. (2020), Ahn et al. (2020), Smith et al. 
(2021a), Brown et al. (2021), Bruder et al.(2021), Xu and Stocco (2021), Weigard et al.(2021), Pike et al.(2022), Waltmann et al. (2022), Smith et al. (2022), Loosen 
et al.(2022), Sullivan-Toole et al.(2022), Hitchcock et al. (2022a), Howlett et al. (2022), Mkrtchian et al. (2023))  
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how reliable parameters would be if the assumed model was a very good 
approximation of the actual cognitive process and there was no change 
in performance itself across sessions (Fig. 2). In other words, parameter 
recoverability provides an upper bound on reliability of measured in-
dividual differences. This does not necessarily mean that high recover-
ability guarantees high reliability but it does mean that low 
recoverability guarantees low reliability. 

As such, parameter recovery results can be particularly informative 
when there is only one session (retest data is not available) and there is 
no other way of assessing retest reliability of parameter estimates. Un-
fortunately, parameter recoverability remains seldom reported, even 
among studies investigating test-retest reliability of parameter estimates 
(Table 1). Studies that do report it, however, predominantly use Pearson 
or rank correlation (e.g., Moutoussis et al., 2018a; Karvelis et al., 2018; 
Hauke et al., 2022; Smith et al., 2022, 2021b; Shahar et al., 2019; 
Hitchcock et al., 2022a; Sullivan-Toole et al., 2022). Here we would like 
to suggest that a more suitable metric of parameter recoverability would 
be absolute ICC (e.g., see Mkrtchian et al., 2023), which is sensitive to all 
systematic errors, unlike Pearson or rank correlation. 

Note that another way to obtain an upper bound on test-retest reli-
ability is to compute split-half reliability, which, like parameter recov-
ery, is not affected by longitudinal changes in behavior. Less than half of 
the studies reviewed here estimated split-half reliability (Price et al., 
2019; Shahar et al., 2019; Brown et al., 2020, 2021; Bruder et al., 2021; 
Xu and Stocco, 2021; Hitchcock et al., 2022a; Loosen et al., 2022; 
Howlett et al., 2022). While most of these studies found split-half reli-
ability to be higher than test-retest reliability, those that used tasks 
involving trial-by-trial learning found split-half reliability to be similar 
or even lower for some parameters (Brown et al., 2020, 2021; Loosen 
et al., 2022). This highlights the fact that important dynamics of 
trial-by-trial learning might be difficult to preserve when partitioning 
the trials. Given that many tasks and models in computational psychi-
atry focus on trial-by-trial learning (RL, hierarchical Gaussian filter, 
active inference), split-half reliability measures might be difficult to rely 
on. Furthermore, even in tasks that do not induce strong trial-by-trial 
learning, split-half analysis comes with potential confounds and de-
pends on how the trials are partitioned (Pronk et al., 2021; Parsons et al., 
2019). For example, comparing odd vs even trials - which was the most 
common method in the reviewed studies - can often lead to over-
estimation or underestimation of reliability (Pronk et al., 2021; Parsons 
et al., 2019). A recommended alternative is permutation-based split-half 
reliability. However, for computational modelling studies this would 
require refitting the model for each permutation (thousands of times), 
making it very computationally intensive. For these reasons, here we 
focused on parameter recovery as a more universal method for obtaining 
an upper bound on test-retest reliability. 

4.3. Model complexity and parameter collinearity may reduce reliability 

Another factor determining reliability of parameter estimates is 
model complexity. Higher complexity here means more parameters, 
which means more degrees of freedom. Given the same amount of data, 
parameter estimates of more complex models will tend to have lower 
reliability (e.g., Waltmann et al., 2022). This can be further exacerbated 
by collinearity among parameters. For example, when using EB for 
model fitting, collinearity can lead to excessive shrinkage and thus poor 
reliability (Scheibehenne and Pachur, 2015). While, in general, model 
comparison procedure guards against excessive complexity and collin-
earity, model simulations can help diagnose and investigate these issues 
in more detail. Some of the reviewed studies chose to fix model pa-
rameters that exhibited collinearity (Brown et al., 2020) or low recov-
erability (Smith et al., 2021b) in order to improve overall reliability. 
Note that recoverability analysis can also inform model selection in 
scenarios where direct model comparison is not possible due to some 
models relying on additional behavioral data (e.g., Karvelis et al., 2018). 

5. Clinically irrelevant changes in task performance pose further 
challenges for longitudinal testing 

So far we have considered how various factors can affect measure-
ment error, and in turn reliability. However, reliability can also be 
affected by actual changes in task performance across repeated admin-
istration of the task (Palminteri and Chevallier, 2018). The challenge 
here is to separate clinically relevant changes (signal) from clinically 
irrelevant ones (noise). Generally, task performance is assumed to be 
primarily driven by trait-like characteristics, which by definition are 
relatively stable over time; that is what the term ‘individual differences’ 
is most often used to refer to (Sackett et al., 2017). However, state-like 
(e.g., mood, sleepiness, attentiveness) fluctuations over time as well as 
practice effects due to repeated exposure to the same task can signifi-
cantly affect task performance, reducing test-retest reliability (Fig. 2). 

5.1. The effects of task practice on computational measures are 
understudied 

Practice effects - specifically, improvement in task performance over 
time - is one of the main confounds in longitudinal studies (Calamia 
et al., 2012; Scharfen et al., 2018), including developmental research 
(Anokhin et al., 2022; Lannoy et al., 2021; Sullivan et al., 2017) and 
clinical trials (Beglinger et al., 2005; Goldberg et al., 2010). The 
magnitude of practice effects usually plateaus after two sessions, 
although this can depend on cognitive domain, test-retest interval, the 
age of participants or their clinical status (Calamia et al., 2012; Scharfen 
et al., 2018). These improvements are thought to stem from increased 

Fig. 2. Test-retest reliability and different sources of 
variance. To address the reliability issues, different sour-
ces of variance must be distinguished and investigated. 
Task design (e.g., the number of trials, outcome probabil-
ities, stimuli timing, duration and type, task instructions, 
practice trials, etc.) and model fitting choices (e.g., EB or 
ML, joint or separate modelling of different testing ses-
sions) contribute to measurement error, while practice ef-
fects as well as state-like and trait-like changes can lead to 
clinically irrelevant changes in task performance. Note that 
the practice effects tend to plateau, state-like effects can be 
expected to fluctuate on short timescales (conveyed by the 
scalloping), while trait-like changes are expected to occur 
on longer timescales. Parameter recovery analysis can 
provide a lower bound on measurement error, and thus an 
upper bound on reliability. Studying longer-term stability 
of the measured constructs (trait-like changes) must be 
accompanied by the assessment of reliability in order to 

account for all other sources of variance.   

P. Karvelis et al.                                                                                                                                                                                                                                 



Neuroscience and Biobehavioral Reviews 148 (2023) 105137

9

familiarity with the format of the task, its specific content, and the 
development of better task-taking strategies (Goldberg et al., 2010). 
Importantly, practice effects have been shown to change the involve-
ment of different brain regions, suggesting that the neural systems 
engaged by repeated task performance might differ from those engaged 
during the initial exposure to the task (Kelly and Garavan, 2005; Chein 
and Schneider, 2005). 

In order to reduce practice effects in longitudinal testing, it is rec-
ommended to include more task practice at the baseline to ensure suf-
ficient familiarity with the task format and to use alternate task forms at 
every session to prevent recall of specific task content (Beglinger et al., 
2005). In many task paradigms in computational psychiatry alternate 
task forms would require to use different cues and stimuli while keeping 
the task structure the same. More task practice at baseline might entail 
revealing certain features of the task design that rely on surprise. For 
example, having reversals of response-outcome contingencies at fixed 
points in the task will be increasingly less surprising with repeated 
exposure to the task, leading to strong practice effects, unless such re-
versals are made less surprising to begin with. However, the caveat here 
is that with increasing familiarity the individual might adopt a strategy 
that relies on heuristics rather than on estimation of random parameters, 
which might substantially deviate from the processes that were origi-
nally of interest to the researcher. 

In the computational assay studies reviewed here, alternate task 
forms were not used and practice effects received little attention in 
general (Table 1). Most studies did not investigate practice effects, one 
study reported no practice effects (Brown et al., 2020), two studies 
discussed potential practice effects (Ahn et al., 2020; Sullivan-Toole 
et al., 2022), one study found significant practice effects but did not 
report its effect size (Moutoussis et al., 2018a, and two studies found 
small to medium practice effects (Mkrtchian et al., 2023; Smith et al., 
2022). Note that this addresses only group-level practice effects related 
to initial improvement. In longitudinal settings with repeated task per-
formance we could expect additional practice effects to emerge, for 
example, due to boredom if the task is experienced as too repetitive and 
not engaging enough (Agrawal et al., 2022). There could be additional 
practice effects that affect task-taking strategies in idiosyncratic ways 
among individuals - e.g., leading to increased between subject variance 
during retest (Sullivan-Toole et al., 2022). All in all, future research in 
computational psychiatry would benefit from a more rigorous assess-
ment of practice effects and the challenges it poses for repeated assess-
ment over different timescales. 

5.2. The effects of state-like changes on computational measures are 
understudied 

Cognitive performance can also be affected by many state-like fac-
tors, including day-to-day fluctuations in mood (Forgas, 2017; Buelow 
and Suhr, 2013), homeostatic sleep drive and circadian cycle effects 
(Balter et al., 2022; Schmidt et al., 2007; Blatter and Cajochen, 2007), 
fluctuations in blood glucose levels (Peters et al., 2020), caffeine intake 
(Rogers et al., 2013), exercise (Lambourne and Tomporowski, 2010), 
etc. Furthermore, in addition to mood affecting task performance, 
engaging with cognitive tasks can in turn affect mood too (Jangraw 
et al., 2023). 

All of this introduces additional noise and further complicates at-
tempts to measure the underlying traits. Only one of the reviewed 
studies examined such state-like effects (Sullivan-Toole et al., 2022); the 
authors found that mood intensity (positive or negative) on the day of 
testing was associated with increased reward learning rate in Iowa 
gambling task. Future studies would benefit from a more detail inves-
tigation of how sensitive different computational assays are to state-like 
fluctuations and the possibility that some of these fluctuations might be 
clinically meaningful (Konova et al., 2020). 

5.3. Trait-like changes: reliability vs stability 

On longer timescales we might expect to also see trait-like changes in 
task performance (Fig. 2). This creates a distinction between reliability 
of parameter estimates themselves and temporal stability of trait-like 
mechanisms that these estimates are generally assumed to reflect. 
Note that in the literature this distinction is not always explicitly made, 
but we consider it to be worth highlighting. The distinction largely de-
pends on the timescale on which substantial trait-like changes could be 
expected to occur (note that this may differ in different populations, e.g., 
due to developmental, aging, or treatment effects). In the studies 
reviewed here, retesting done on timescales of 6–18 months or longer 
was usually interpreted and discussed in terms of stability, while any-
thing shorter than that (typically on the order of weeks) was interpreted 
in terms of reliability. We, therefore, chose 6 months as an operational 
threshold for the purposes of this review. 

In the studies reviewed here, most parameter estimates were found 
to have poor and some moderate stability (Moutoussis et al., 2018a; 
Shahar et al., 2019; Smith et al., 2021b, 2022; Chung et al., 2017; Brown 
et al., 2020). However, these results could also be confounded by low 
reliability, as none of the studies assessed reliability of parameter esti-
mates (at shorter intervals) within the same sample. While two of the 
studies (Brown et al., 2020; Smith et al., 2021b) did examine reliability 
at shorter intervals, it was done using independent samples and different 
task parameters (e.g., different number of trials) making the compari-
sons difficult. Future studies seeking to study stability would greatly 
benefit from the assessment of reliability within the same sample as part 
of their study design (Heise, 1969). 

The goal of stability studies is not so much to find the most stable 
traits, but instead to find which trait-like changes track one’s mental 
health status or to find traits that capture the underlying vulnerability to 
develop a disorder and can therefore be used to predict or improve 
clinical outcomes. None of the above studies found such effects 
(although see Smith et al., 2022) for an exploratory analysis). 

6. What reliability is sufficient? 

In this review, we have adopted the classification of ICC values 
proposed by Koo and Li (2016) ( < 0.5 is poor, 0.5–0.75 is fair, 0.75–0.9 
is good, and > 0.9 is excellent). While having a standardized labelling 
system can facilitate communication of findings, we must keep in mind 
that this and other proposed classifications (Fleiss, 2011; Landis and 
Koch, 1977) are all arbitrary (Shrout, 1998; Weir, 2005; Hedge et al., 
2018). While they capture meaningful ordinal information (i.e., ‘good’ is 
better than ‘poor’), ‘poor’ reliability does not necessarily mean that it is 
not sufficient for clinical applications, while ‘good’ reliability does not 
necessarily mean that it is. What is sufficient will depend on many other 
factors that lie in-between reliability and clinical utility (Fig. 1). 

One way to deal with this arbitrariness is to go beyond the qualitative 
labels and consider quantitative consequences that reliability can have 
on any subsequent analysis. The clearest and perhaps the most relevant 
case is correlational analysis: true correlations between the task-based 
measures (x) and other measures (y; e.g., symptoms or measures from 
a different task) will be attenuated by their reliability following the 
equation (Spearman, 1904): 

robservable = rtrue*
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ICCx*ICCy

√
(2) 

Here we must remember that although task-based measures tend to 
have much poorer reliability than scale-based measures (e.g., Enkavi 
et al., 2019), the latter still rarely exhibit excellent reliability. This in-
cludes popular scales for schizophrenia (Norman et al., 1996; Peralta 
et al., 1995), autism (Zander et al., 2016; Hoekstra et al., 2008), anxiety 
(Maier et al., 1988; Barnes et al., 2002), and depression (Davidson et al., 
1986; Carrozzino et al., 2020), as well as the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-5) (Regier et al., 2013 and the 
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International Classification of Diseases (ICD-11) (Reed et al., 2018). 
The combined effect of less than excellent reliabilities will make it 

much more difficult to detect true effects and will require larger sample 
sizes (Baugh, 2002). For example, assuming ICC = 0.6 for both measures 
and the true correlation in the range of r = 0.3 − 0.5, the observable 
correlation would be almost halved to r = 0.2 − 0.3 and it would require 
1.5 − 3 times larger sample sizes (N = 239 instead of N = 84) to detect it 
(Hedge et al., 2018). Similarly, less than excellent reliabilities will 
impede efforts to use machine learning models for individual level 
predictions. While the effects of reliability in this context are less 
straightforward to intuit and require more empirical investigation, a 
recent study by Gell et al. (2023) has shown that in the context of pre-
dicting behavioral phenotypes from functional connectivity data, 
phenotypic reliability of ICC = 0.8 (“good”) may cut prediction accuracy 
in half (as compared to ICC = 1), while ICC≤ 0.6 (“fair”) can make 
predictions completely meaningless. 

This underscores the importance of being aware of the reliability of 
one’s instruments and the consequences it has on statistical power 
(Williams and Zimmerman, 1989; Baugh, 2002; Hedge et al., 2018), and 
subsequently on construct validation and clinical translation (Fig. 1). 
Improving reliability (instead of collecting larger samples) can make 
research more efficient and less costly (Nikolaidis et al., 2022). Impor-
tantly, for making accurate predictions at the individual level (i.e., to 
make personalized psychiatry possible) achieving excellent reliability is 
just as, if not more, important than acquiring large samples (Gell et al., 
2023). 

7. What is construct validity? 

Construct validity refers to the extent to which an instrument mea-
sures what it intends to measure (Kane, 2013; Borsboom et al., 2004; 
Messick, 1984; Cronbach and Meehl, 1955). It can be established in 
many different ways. First, it can be done based on subjective judgement 
of the general features of the measure (face validity) and how well it 
captures all facets of the construct (content validity). Second, it can be 
done based on statistical associations with other measures (criterion 
validity), including other measures of the same construct (convergent 
validity) or measures of some other construct taken around similar time 
(concurrent validity) or at a future time (predictive validity). One could 
consider all of these to be different types of validation, all of which 
support construct validity (Borsboom et al., 2004). 

While these are the textbook examples of validity, countless other 
ways to refer to specific instances of validity exist such as ecological 
validity, which refers to how well a measure captures real-world pro-
cesses, neurobiological validity, which refers to a measured construct 
being associated with brain function or structure, clinical validity, which 
refers to a measure being associated with clinical measures, diagnostic 
validity, which refers to a measure’s ability to differentiate individuals 

with and without a certain diagnosis, or longitudinal validity, which re-
fers to a covariation between longitudinal changes in a measured 
construct and changes in an outcome of interest, and so on. 

More generally speaking, construct validity is established by 
demonstrating that a measure is associated with some other measure in a 
way that makes theoretical sense. Validity is thus inherent not to the 
instrument but to the interpretation and the use of its measures (Kane, 
2013). For example, a measure of some cognitive dimension might not 
be associated with any mental disorders (and thus have no clinical 
validity), but it might be a valid measure for understanding individual 
differences in some other context. Unlike reliability, however, validity is 
not quantifiable (beyond the strength of statistical relationships) and 
there is no established qualitative labelling system to denote the degree 
of validity that a measure has. Establishing or disproving validity of a 
measure is therefore not a straightforward matter. Conveniently, 
computational modelling approaches (as opposed to strictly con-
ceptual/verbal theorizing), have many desirable properties that make 
construct validation more manageable: it forces researchers to explicitly 
specify not only the constructs of interest but also the relationships be-
tween them, allowing for quantitative and thus more testable pre-
dictions (Grahek et al., 2021). 

8. Lack of convergent validity points to the problems of 
overgeneralization and overinterpretation 

In computational psychiatry, most of the effort has gone into 
studying clinical validity by investigating associations between 
computational measures and clinician-rated or self-reported symptom 
measures (concurrent validity) or with diagnostic categories (diagnostic 
validity) (e.g., Chrysaitis and Seriès, 2022; Kaliuzhna et al., 2019; Kat-
thagen et al., 2022; Pike and Robinson, 2022). Considerable effort has 
also gone into studying neurobiological validity of computational 
measures (e.g., Iglesias et al., 2017. However, almost no work has been 
done on making sure that measures of the same construct (e.g., learning 
rate, Bayesian priors) have convergent validity across similar tasks 
(Browning et al., 2020), which one could consider to be a prerequisite 
for trying to establish clinical validity (Fig. 1). 

There is mounting evidence challenging convergent validity of 
various task measures across multiple cognitive domains. This includes 
the measures of cognitive control, with a lack of convergent validity 
among tasks (Noreen and MacLeod, 2015; Hedge et al., 2018; Eisenberg 
et al., 2019; Gärtner and Strobel, 2021; Whitehead et al., 2020; Raud 
et al., 2020) and between tasks and self-report (Saunders et al., 2018; 
Enkavi et al., 2019; Eisenberg et al., 2019), the measures of risk pref-
erence, with a lack of convergent validity among tasks (Pedroni et al., 
2017; Buelow and Barnhart, 2018) and between tasks and self-report 
(Frey et al., 2017), the measures of distress tolerance, with a lack of 
convergent validity between tasks and self-report (McHugh et al., 2011), 

Fig. 3. A lack of convergent validity undermines 
interpretability. The illustration on the left represents a 
multitude of largely non-overlapping Bayesian priors as 
suggested by recent empirical findings showing no com-
mon factors for reliance on priors. This poses problems for 
computational accounts proposing general impairments in 
Bayesian priors. Computational accounts proposing more 
specific impairments, however, still face the challenge of 
appropriately operationalizing such priors. Currently, due 
to the overreliance on single-task designs, there is a ten-
dency to overgeneralize when interpreting findings from a 
given task, while the relative contribution of more specific 
experimental factors often remains unclear - this is depic-
ted in the illustration on the right for group differences 
(due to it being simpler to illustrate), but the same holds for 
individual differences.   
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the measures of reliance on perceptual priors, with a lack of convergent 
validity among tasks (Grzeczkowski et al., 2017, 2018; Tulver et al., 
2019), the measures of sensitivity to positive and negative valence, with 
a lack of convergent validity among tasks, self-report, and neuroimaging 
(Peng et al., 2021), and RL model parameter estimates, with a lack of 
convergent validity among tasks (Eckstein et al., 2022, 2021). 

How can we make sense of these findings? As we discussed 
throughout the paper, one obvious culprit is low reliability of task 
measures. However, validity problems plague even those tasks that 
demonstrate moderate to good test-retest reliability (Grzeczkowski 
et al., 2017, 2018; Pedroni et al., 2017; Frey et al., 2017; Saunders et al., 
2018; Snijder et al., 2022). Another emerging theme in explaining the 
lack of validity points to the problem of overgeneralization (Grzecz-
kowski et al., 2017; Tulver et al., 2019; Whitehead et al., 2020; Dang 
et al., 2020; Gärtner and Strobel, 2021; Friedman and Gustavson, 2022; 
Eckstein et al., 2022, 2021; Peng et al., 2021). That is, what is being 
measured in most cases is likely much more stimuli-specific, task-spe-
cific, modality-specific, or domain-specific than is assumed to be. The 
measures might be capturing only one facet of the assumed construct, or 
it simply might be confounded by the above-mentioned factors, which in 
turn can lead to the overinterpretation of findings. To put it yet another 
way, many of the studied constructs might lack coherence and might be 
suffering from jingle fallacy - an erroneous assumption that measures 
with the same name are capturing the same processes (e.g., Eisenberg 
et al., 2019). 

8.1. Poor validity implications for testing computational accounts of 
mental disorders 

These issues have significant implications for computational psy-
chiatry research, where a typical study design includes a single cognitive 
task and tests a rather general hypothesis. For example, the findings of 
no convergent validity among tasks assessing perceptual priors (Tulver 
et al., 2019), even when the tasks are from the same narrow subdomain 
of visual illusions (Grzeczkowski et al., 2017; Cretenoud et al., 2019), 
means that using such measures to capture the construct of ‘reliance on 
perceptual priors’ has little validity. This poses a considerable problem 
for the Bayesian accounts of autism and schizophrenia, which consider 
impaired perceptual inference, resulting from over- or under-reliance on 
priors, to be a core mechanism underlying these disorders (Fletcher and 
Frith, 2009; Corlett et al., 2009; Pellicano and Burr, 2012; Palmer et al., 
2017). It might also explain why attempts to empirically assess these 
priors have produced a lot of mixed results (Chrysaitis and Seriès, 2022; 
Katthagen et al., 2022; Sterzer et al., 2018). The theory available for 
interpretation might simply be too general and the results produced by 
single-task designs might be too task-specific (Yarkoni, 2022). A few 
studies that did use a whole battery of tasks, consisting of various visual 
illusions, found these disorders to be equally susceptible to most and less 

susceptible only to a couple illusions, suggesting the effects to be 
illusion-specific (Grzeczkowski et al., 2018; Kaliuzhna et al., 2019; 
Chouinard et al., 2016). 

As Bayesian framework continues to be applied to theorize about 
increasingly more disorders (Schwartenbeck et al., 2015; Gu and Filbey, 
2017; Paulus et al., 2019; Linson et al., 2020; Richards et al., 2020; 
Karvelis and Diaconescu, 2022; McGovern et al., 2022; Herzog et al., 
2022), with a view that each disorder can be understood in terms of a 
certain kind of maladaptive priors (Fig. 3), sufficient validation of assays 
for measuring such priors could save a lot of confusion down the line. 

8.2. Might computational measures exhibit better convergent validity? 

While some were motivated by computational accounts of cognition, 
the studies lacking convergent validity discussed above have relied 
solely on behavioral measures. Perhaps computational measures, which 
are meant to capture latent cognitive variables more directly, would 
show more convergence among similar tasks? Surprisingly little 
empirical data exists to answer this question. 

A recent study by Eckstein et al. (2022) suggests that computational 
measures might not necessarily show better convergent validity. The 
authors investigated convergence of RL model parameters across 3 
similar tasks in a large sample (N = 291) and found that most parame-
ters showed none-to-weak correlations across the tasks. Even when 
assessing shared variance between one parameter in one task and all 
parameters in a different task, the shared variance was only < 30% for 
all parameters and < 10% for most parameters. This challenges one of 
the main proposed advantages of theory-driven computational model-
ling: interpretability of computational measures. The parameters might 
have a clear theoretical meaning and computational role, but the fact 
that they do not capture individual differences across similar contexts - i. 
e., their lack of generalizability - makes it difficult to interpret the 
meaning of parameter estimates beyond a specific task context (Eckstein 
et al., 2021). 

A recent study by Weigard et al. (2021), however, reported slightly 
more encouraging results. The authors reanalyzed 8 tasks from Eisen-
berg et al. (2019) dataset (local-global task, shape matching task, 
directed forgetting task, attentional network task, Stroop task, Simon 
task, task-switching task, and choice response time task) using a 
drift-diffusion model (DDM). Applying a bifactor model (separating 
task-general and task-specific effects) to analyze parameter estimates 
revealed that task-general factors of DDM parameters explained 76–86% 
of variance in parameter estimates across the tasks and were highly 
reliable/stable when retesting within an interval of 2–8 months (ICC =
0.69 − 0.78). However, simple behavioral measures of mean reaction 
time and accuracy showed similarly good convergence across tasks 
(with the task-general factor explaining 76–86% of variance) and had 
similarly good reliability (ICC = 76 − 78). Only the difference scores, 

Fig. 4. A graphical summary of the intended uses of 
computational assays. This summary is based on the 
most common proposals in the literature (Paulus et al., 
2016; Paulus, 2017; Patzelt et al., 2018; Nair et al., 2020; 
Reiter et al., 2021; Yip et al., 2022; Hauser et al., 2022) 
and might not be exhaustive. Note that most of these 
applications require longitudinal study of the disorders. 
For example, if a computational measure does not show 
within-individual covariation with changes in symptoms, 
it cannot be a valid treatment target, be used to monitor 
disease course, or provide interpretable treatment 
response predictions. Even computational phenotyping 
might require longitudinal assessments in order to ac-
count for the dynamic nature of mental disorders (Ger-
mine et al., 2021; Gueguen et al., 2021).   
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which are typically used to investigate self-regulation in these tasks, 
showed poor convergence (29–30% variance explained) and modest 
reliability (ICC = 0.51 − 0.56). This suggests that most of the 
improvement came from avoiding differences scores while computa-
tional modelling did not add much extra value. Nonetheless, 
task-general drift-rate factor did show a slightly better correlation with 
self-reported self-control (r = 0.18) than did task-general accuracy fac-
tor (r = 0.11). Another study from the same team also found converging 
results across three self-control tasks (Stroop, Go/NoGo, and Stop 
Signal), with task-general drift rate factor accounting for 50% of the 
variance in this parameter across the tasks (Sripada and Weigard, 2021), 
although task-general factor results for other parameters and behavioral 
measures were not reported. 

Overall, while still very scarce, preliminary evidence suggests that 
computational measures might not necessarily offer much improvement 
over simple behavioral measures in terms of convergent validity. This 
further cautions against the use of single-task designs due to the dangers 
of overgeneralization and overinterpretation of findings, even when the 
task data is modelled (Fig. 3). More empirical studies are needed to 
investigate convergent validity of computational measures across 
different tasks and models. This will require using batteries of tasks, 
ideally in combination with test-retest in order to control for the reli-
ability of the measures (for some examples see: Grzeczkowski et al., 
2017, 2018; Frey et al., 2017; Snijder et al., 2022; Weigard et al., 2021). 

9. From clinical validity to clinical utility: the importance of 
longitudinal approaches 

Given the problems of reliability and convergent validity of task 
measures, it is not surprising that studies investigating clinical validity 
of computational measures (or behavioral measures motivated by 
computational theories) have produced many mixed results (e.g., 
Sterzer et al., 2018; Chrysaitis and Seriès, 2022; Pike and Robinson, 
2022; Katthagen et al., 2022; Gibbs-Dean et al., 2023). However, even if 
the reliability and convergent validity issues were addressed, there are 
other challenges that lay ahead. 

Most studies investigating clinical validity rely on cross-sectional 
analyses: studying how computational and symptom measures vary 
across a group of people assessed at a single point in time, i.e., studying 
between-individual or between-group effects. While this approach could 
eventually be used for identifying mental health risks or for computa-
tional phenotyping (Patzelt et al., 2018), it does not by itself inform 
clinical decision making or lead to improved outcomes. Predicting or 
monitoring treatment response or disease course as well as developing 
new and improved treatments or treatment targets (Fig. 4) requires the 
demonstration that computational measures have predictive and longi-
tudinal validity (Yip et al., 2022). In other words, it requires studying 
within-subject effects: how computational measures and symptoms vary 
over time within an individual (e.g., as a result of an intervention or 
naturally). While between-group and between-individual effects are 
often assumed to generalize to within-individual effects, in practice it is 
rarely the case - this is often referred to as nonergodicity, ecological fal-
lacy, or Simpson’s paradox (Molenaar and Campbell, 2009; Kievit et al., 
2013; Fisher et al., 2018). 

9.1. Predictive models based on cross-sectional computational measures 

The most common predictive modelling approach involves assessing 
longitudinal change in clinical measures but using cross-sectional 
(baseline) computational measures to predict the change; to provide 
individual-level predictions, machine learning techniques are used. 
Such approaches have shown some success in predicting various clinical 
outcomes, such as treatment response (Karvelis et al., 2022; Hauke et al., 
2022), relapse after discontinuation of treatment (Berwian et al., 2020), 
or naturalistic disease course (Frässle et al., 2020; Sebold et al., 2017). 
The accuracy of individual-level predictions, however, in most cases 

remains modest. In addition, machine learning validation methods and 
sample sizes typically used in such studies are likely to give overly 
optimistic results and not generalize to independent samples (Karvelis 
et al., 2022). While pursuing this approach remains appealing due to the 
fact that it requires minimal resources and could be easily integrated 
into clinical practice, it rests on the assumption that cross-sectional 
computational measures are sufficient for capturing clinically relevant 
individual differences. Furthermore, even if high prediction accuracy 
was achieved, such models provide limited interpretability: they do not 
tell us why certain computational measures are predictive of clinical 
outcomes or how different treatments are affecting the underlying 
computational processes (Lan and Browning, 2022; Reiter et al., 2021; 
Nair et al., 2020; Iglesias et al., 2017; Robbins and Cardinal, 2019; 
Hauser et al., 2022). 

9.2. Longitudinal validity and the dynamic nature of mental disorders 

A richer understanding of individual differences in how symptoms 
change over time could be achieved by studying longitudinal validity - 
also known as responsiveness (Liang, 2000; Mokkink et al., 2021) - of 
computational measures. While reliability and convergent validity is-
sues should be addressed first, several studies have already attempted 
investigating longitudinal validity. For example, a recent study by 
Brown et al. (2021) found that symptom improvement in depression 
following 12 weeks of cognitive behavioral therapy was associated with 
increase in reward learning rate and loss outcome shift (valuation bias) 
in a probabilistic operant learning task. Reliability of these parameters, 
however, was assessed only on a separate small (N = 20) sample of 
healthy controls, which provided very uncertain estimates of reliability 
(with 95% credible interval being [− 0.35:0.99] and [− 0.83:0.96] for 
each of the parameters). Another recent study by Hitchcock et al. 
(2022a) found that drift rate regression parameter in the self-referential 
encoding task covaried with an improvement in a subset of 
anhedonia-related depression symptoms following 8 weeks of mindful-
ness training. While this parameter showed rather poor reliability (ICC 
= ~ 0.5), it was assessed on the same sample using pre- and 
post-intervention data and thus is likely partially reflective of the clin-
ically meaningful change in this parameter (i.e., the actual reliability 
assessed on a control group could be expected to be higher). Another 
recent study investigating people experiencing hallucinations (Kafadar 
et al., 2022) reported that increase in prior weighing in a conditioned 
hallucinations task (over a period of ~ 1 year) was associated with 
increased frequency of auditory hallucinations in participants daily 
lives. However, the study did not report test-retest reliability or recov-
erability of this parameter estimate. Many other attempts to study lon-
gitudinal validity of computational measures have lead to null findings 
(Chung et al., 2017; Moutoussis et al., 2018a; Smith et al., 2021b, 2022). 

Most of these studies have used only 2 or 3 widely spaced assess-
ments (ranging from 5.5 weeks to 18 months apart). Considering the 
dynamic nature of mental disorders, more frequent (and more strate-
gically timed) longitudinal assessments might be needed to capture 
many important features of the disorders (Borsboom et al., 2013; Sharp 
et al., 2020; Germine et al., 2021; Gueguen et al., 2021; Hitchcock et al., 
2022b; Gauld and Depannemaecker, 2023). A notable recent study by 
Konova et al. (2020) serves to illustrate the usefulness of this approach 
for predicting short-term disease course. Studying patients with opioid 
use disorder, the authors showed that within-individual increase in a 
computational measure of ambiguity tolerance (assessed on weekly, 
biweekly, and monthly basis) preceded return to opioid use within the 
subsequent 1–4 weeks. Importantly, this parameter was not found to be 
different between patients and controls (no between-group effect) - an 
example of nonergodicity that we mentioned earlier. Their results are 
also supported by high test-retest reliability of the parameter estimates 
(ICC = 0.70 − 0.72 in patients and ICC = 0.87 − 0.89 in healthy con-
trols. Note that while reliability among patients was lower, the fact that 
variation in risk tolerance was predictive of opioid use suggest that this 
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might be due to a clinically meaningful change in cognition over short 
periods of time. 

Despite these encouraging examples, and given the issues of 
convergent validity among tasks, using a single task might not be suf-
ficient for providing highly accurate insights and predictions for clinical 
decision making. Instead, longitudinal testing might need to be done 
with batteries of tasks in order to infer task-general computational 
deficits (Weigard and Sripada, 2021; Vinckier et al., 2022) or to build a 
sufficiently rich multidimensional characterization of the disorders 
(Gueguen et al., 2021). 

9.3. Clinical efficacy, clinical utility, and additional challenges for assay 
development 

Using retrospective data for studying predictive validity comes with 
a high risk of overfitting, especially when relying on currently popular 
validation techniques (Karvelis et al., 2022; Chekroud et al., 2021; 
Rutledge et al., 2019). A much more convincing test of prediction ac-
curacy will be the demonstration of clinical efficacy: showing that clinical 
decision making guided by computational assays leads to improved 
outcomes compared to treatment as usual (Paulus and Thompson, 2021; 
van der Vinne et al., 2021; Kingslake et al., 2017). Importantly, this will 
come with additional practical challenges of how to best integrate the 
assays into the clinical workflow (Paulus and Thompson, 2021; Kelly 
et al., 2019). Finally, even if clinical efficacy can be demonstrated in 

highly controlled research trials, clinical utility of the assays will even-
tually depend on their cost-effectiveness, ease of use, and its applica-
bility in a range of real-world clinical settings (Hollon et al., 2002; 
Paulus, 2017). 

Although most pertinent to the later stages of assay development, 
thinking about the deployment and scalability challenges for different 
assay uses (Fig. 4) can also help inform and optimize the earlier stages of 
the development (Yip et al., 2022). For example, monitoring disease 
course, treatment response, or characterizing dynamic computational 
phenotypes requires longitudinal testing, likely involving batteries of 
tasks. To make frequent longitudinal testing feasible, it might be 
necessary to move exclusively to remote testing strategies such as 
smartphone-based tasks (Gillan and Rutledge, 2021; Zech et al., 2022; 
Pronk et al., 2022; Howlett et al., 2022). Another underappreciated 
challenge is engagement. Many of the tasks used in research today are 
rather lengthy and tedious, which makes it unlikely that patients will 
adhere to completing them on a regular basis. Task engagement (and 
user experience more generally) is therefore an important variable to 
optimize, and will require applying gamification strategies (Vermeir 
et al., 2020 and adopting patient-centered research frameworks (Ger-
mine et al., 2021; Pratap et al., 2020). Gamification can make tasks not 
only more appealing, but also more efficient (Kucina et al., 2022). 

Additional strategies can be used to further increase task efficiency. 
One novel approach is adaptive design optimization (ADO) (Cavagnaro 
et al., 2010; Myung et al., 2013; Pooseh et al., 2018; Ahn et al., 2020; 

Box 1: Key insights and recommendations for future research 

Addressing reliability issues should take the highest priority: 

• Reliability analysis and reporting should become a routine practice. This includes both test-retest reliability and parameter recoverability. 

• Parameter recoverability provides an upper bound on test-retest reliability and can help disentangle different sources of variance (mea-
surement error vs. change in performance). 

• Different sources of variance contributing to low reliability should be investigated more systematically. Currently, practice and state-like 
effects are particularly understudied. 

• Reliability of behavioral and computational measures can be improved by using hierarchical estimation methods (mixed models and empirical 
Bayes, respectively). Further improvements can be achieved by modelling the two testing sessions jointly, using bivariate distributions. 

• Model complexity and collinearity among parameters might negatively affect reliability of parameter estimates. Model simulations can help 
diagnose these issues. 

• Studying long-term stability of computational measures needs to be accompanied by test-retest analysis (on a short timescale) to avoid poor 
reliability confounding stability results. 

• Absolute ICC should be preferred over Pearson or rank correlation for assessing reliability because it is sensitive to all systematic errors. This 
applies to both test-retest reliability and parameter recovery. 

Addressing construct validity should take the second highest priority: 

• Convergent validity studies would greatly benefit from controlling for reliability of the measures by incorporating test-retest in their study 
design. 

• Demonstrating convergent validity among computational measures from similar tasks could be seen as a starting goal, with convergence 
between computational and scale-based measures being a subsequent more challenging goal due to the differences in response processes. 
However, the former has been studied much less than the latter. 

The development of assays should be guided by a long-term vision of their uses: 

• To move closer to clinical applications it is necessary to focus on predictive and longitudinal validity. Cross-sectional findings might not always 
generalize to longitudinal validity (non-ergodicity). 

• Predictive models based on cross-sectional computational measures provide limited interpretability, which diminishes their utility. Longi-
tudinal assessments would be much more informative in revealing how computational mechanisms change over time (naturally or in response to 
treatment). 

• Frequent longitudinal assessments might be needed to capture the dynamic nature of many mental disorders. 

• To make longitudinal testing more feasible, it is important to focus on making the assays more accessible (smartphone-based), more engaging 
(gamification), shorter/more efficient (adaptive design optimization, dense sampling of behavior), and integrated with other sources of in-
formation (wearable devices and ecological momentary assessments). 

• The pursuit of all these subgoals (reliability, longitudinal validity, efficiency, etc.) should be seen as an iterative rather than sequential process.  
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Kwon et al., 2022), which adapts task parameters in real time based on 
task behavior in order to maximize the informativeness of collected 
data. A recent study by Ahn et al. (2020) showed that using ADO 
excellent test-retest reliability (ICC = 0.97) in a delay discounting task 
can be achieved with less than 20 trials (under 2 min of testing). It is 
interesting to note that ADO could also be synergistic with engagement 
optimization (cf. dynamic game difficulty balancing in traditional video 
games), and could reduce ceiling and floor effects in performance, 
increasing the range of measurable individual differences. Another 
novel approach for improving efficiency involves dense sampling of 
behavior (Howlett et al., 2022, 2020). Instead of one or two data points 
per trial (e.g., response choice or reaction time), tasks could be designed 
to collect continuous real-time data, resulting in dozens of data points 
per trial. Using this approach, Howlett et al. (2022) showed that good 
test-retest reliability of parameter estimates (ICC = 0.78 − 0.81) can be 
achieved under 6 min of testing. 

Finally, task efficiency and informativeness of task data could be 
further increased by combining it with passive data collection from 
wearable devices (Pratap et al., 2020) and ecological momentary as-
sessments (Pronk et al., 2022). These additional data sources could 
provide important context for interpreting model parameters and could 
also help account for potential confounding factors; see Gillan and 
Rutledge (2021) and Hauser et al. (2022) for related discussions. 

10. Discussion 

Despite being the bread and butter of individual difference research, 
psychometric properties of computational assays have so far been 
understudied. The emerging empirical evidence reviewed here suggests 
that computational measures obtained from the assays often do not 
provide much improvement over simple behavioral measures and show 
similarly poor reliabilities (Table 1). Furthermore, behavioral and 
computational measures used to test computational accounts of mental 
disorders show a lack of convergent validity (among themselves and 
with self-report measures of the same constructs), which mirrors the 
generalizability crisis in the field of psychology (Yarkoni, 2022). These 
issues are a major bottleneck for any further development of computa-
tional assays (Fig. 1). 

Although it may paint a rather dire picture, we hope that this review 
also provides insights and guidance for how to move forward (see Box 
1). The most essential methodological move is to embrace longitudinal 
testing with batteries of tasks. While this does not automatically solve 
the problems in question, it allows us to begin studying and addressing 
them. First, reliability needs to be studied in more detail, distinguishing 
and accounting for different sources of variance (Fig. 2), including 
measurement error (stemming from task design and model fitting) and 
changes in behavior (practice effects, state-like changes, and trait-like 
changes). Empirical work is needed to get a better sense of the impor-
tance of each of these sources. For example, state-like changes and 
practice effects are currently understudied, while trait-like changes have 
proven difficult to study due to being confounded by the other sources of 
variance (Table 1). Note that once the different sources of variance are 
better understood, it may be worth considering how such effects could 
be explicitly incorporated into the models rather than treated as unin-
formative error (e.g., Van Bork et al., 2022). 

One important thing to keep in mind is that reliability can be sen-
sitive to any modifications of task design and data analysis methods. 
Therefore, the concept of declaring sufficient or insufficient reliability 
for an assay once and for all does not seem possible. In other words, 
reliability results might not generalize to similar tasks and similar 
methods. Instead, reporting of reliability must become a routine practice 
(Parsons et al., 2019). The same goes for parameter recoverability 
(Palminteri et al., 2017; Wilson and Collins, 2019), which can provide 
an upper bound on reliability for cross-sectional studies and can also be 
informative for disentangling different sources of variance in longitu-
dinal studies investigating test-retest reliability. Here we suggest that, 

just as for reliability, the most informative measure of parameter 
recoverability would be absolute ICC (instead of Pearson’s and rank 
correlation that are used currently). For a guide on how to report reli-
ability measures see Parsons et al. (2019). 

In order to begin addressing the construct validity issues, we suggest 
to start with studying convergent validity among tasks of varying sim-
ilarity. This can be seen as the lowest bar for convergent validity because 
tasks are meant to probe similar response processes. In contrast, self- 
report might rely on different processes involving self-reflection (Pal-
minteri and Chevallier, 2018; Dang et al., 2020), therefore, seeking 
convergent validity between tasks and self-report could be seen as more 
ambitious. In our literature search, we were able to identify only a few 
studies investigating convergent validity of computational measures 
across similar tasks (Eckstein et al., 2022; Weigard et al., 2021; Sripada 
and Weigard, 2021). Many more such studies are needed - ideally 
including repeated assessments to control for the effects of reliability 
(Weigard et al., 2021). Due to the lack of such studies most of the 
literature we presented to support our arguments came from showing a 
lack of convergent validity among behavioral measures. Note that this is 
warranted by the fact that many tasks and resulting behavioral measures 
are often interpreted in computational terms (even without doing any 
model fitting) and are used to test computational accounts of mental 
disorders (Chrysaitis and Seriès, 2022; Kaliuzhna et al., 2019; Tulver 
et al., 2019; Grzeczkowski et al., 2018). 

10.1. The big picture: prioritization of subgoals and their joint 
optimization 

Reliability and construct validity constitute the most important part 
of the review and reflect the need to prioritize these issues. Still, we 
aimed to provide a wider perspective and to consider other milestones 
(Fig. 1) and end goals (Fig. 4) of assay development. Being aware of 
what challenges await at subsequent stages and what properties clini-
cally useful tools need to have, can help make better research decisions 
at earlier stages. 

For example, one simple but significant insight is that most of the 
milestones require longitudinal data collection, while most of the cur-
rent research relies on cross-sectional data. On the other hand, when it 
comes to real-world uses of the assays, longitudinal data collection 
(especially frequent testing with multiple tasks) becomes very imprac-
tical. It is therefore necessary to find ways to make longitudinal data 
collection more efficient. We have provided some pointers in that regard 
(gamification, adaptive design optimization, dense sampling techniques, 
integration with wearable device data, etc.), but more innovative ideas 
are needed. 

The key insight here is that it is necessary to work on many of the 
subgoals (e.g., reliability, predictive validity, clinical efficacy) in par-
allel rather than sequentially. For example, there are many ways to 
improve reliability (Zorowitz and Niv, 2023), but that alone does not 
guarantee significant improvements in predictive validity and utility of 
the measures (Finn and Rosenberg, 2021). Speaking in computational 
terms, optimizing exclusively for reliability can leave us stuck in a local 
maximum. Furthermore, any assay design changes that would later be 
done to improve validity or engagement would likely affect reliability 
too, requiring it to be reevaluated. Thus, it is important to look for so-
lutions that address multiple problems simultaneously and move us 
closer to the global maximum. That is why here we emphasized the 
importance of longitudinal designs with batteries of tasks: this allows to 
simultaneously address any of the subgoals, including reliability, 
convergent validity, longitudinal validity, and ultimately, clinical util-
ity. In this context, Germine et al. (2021) provide a very helpful sketch of 
an iterative task development procedure that is aimed at jointly opti-
mizing for psychometric properties, engagement, and accessibility. This 
approach could be extended to incorporate any other subgoals such as 
efficiency: while research might benefit from more testing with larger 
batteries of tasks, real-world applications will require minimal sets of 
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short tasks that are maximally informative. 

10.2. Dealing with temporal and contextual changes in behavior 

While the challenges of accounting for temporal and contextual 
changes in behavior is only beginning to receive serious attention in 
computational psychiatry (Germine et al., 2021; Gueguen et al., 2021; 
Hitchcock et al., 2022b), similar challenges have been encountered 
previously in personality psychology research - this is known as the 
personality-situation debate (Fleeson and Noftle, 2008; Kenrick and 
Funder, 1988; Epstein, 1979, 1980). In short, this large body of research 
was concerned with the fact that behavior of an individual tends to vary 
across time and contexts, making it difficult to infer trait-like charac-
teristics from a single assessment. Perhaps unsurprisingly, it was found 
that to infer traits that are predictive of future behavior it is necessary to 
aggregate behavior/responses across measurement occasions and/or 
different contexts (e.g., Epstein, 1979, 1980). 

It may be worthwhile to consider how this body of research can 
inform assay development (Lilienfeld, 2014; Hitchcock et al., 2017). We 
could think of different tasks within a battery as providing different 
contexts and enabling us to build a multidimensional profile of an in-
dividual (Gueguen et al., 2021). From here, we could focus on extracting 
task- or domain-general factors (Weigard and Sripada, 2021; Vinckier 
et al., 2022), or focus on the variation/differences across contexts as 
holding important information about the disorder (Hitchcock et al., 
2022b). Similarly, there are different ways to consider temporal varia-
tion. For example, we might focus on average behavior or its variation 
across time. However, if the assays are intended to be used for assessing 
longitudinal changes (for treatment monitoring or short-term risk pre-
diction), the need to aggregate data across many measurement occasions 
becomes quite impractical. Ideally, the assays should be developed to be 
sensitive to changes from one instance of measurement to the next. 
Ultimately, however, the feasibility and clinical utility of each of these 
approaches is an empirical question. What works best might also differ 
among different disorders, as some are characterized by more variability 
than others (Hitchcock et al., 2022b). 

Note that clinically meaningful state-like variation introduces 
another complication in assay development. On one hand, high test- 
retest reliability is crucially important. On the other hand, test-retest 
reliability measures assume that the assays are aimed at capturing 
relatively stable trait-like factors (i.e., state-like variation reduces test- 
retest reliability). In this review, we discussed two studies where low 
reliability was partly a result of clinically meaningful short-term 
changes (Konova et al., 2020; Hitchcock et al., 2022a). In such cases, 
demonstrating responsiveness (i.e., showing that computational mea-
sures are sensitive to within-subject variations in symptoms), or pre-
dictive/convergent validity might be more informative than achieving 
high test-retest reliability. This once again stresses the importance of 
experimental designs that are based on big-picture thinking and aimed 
at addressing multiple subgoals simultaneously (Fig. 1). 

10.3. Similarities and synergies with idiographic approaches in clinical 
psychology 

It is interesting to note that many ideas central to this review happen 
to mirror recent trends in clinical psychology (Hayes et al., 2022, 2019; 
Wright and Woods, 2020; Hofmann et al., 2020; Hofmann and Hayes, 
2019). Led by the motivation to personalize psychotherapy, researchers 
in clinical psychology are focusing on idiographic approaches (studying 
individual differences) versus nomotheic approaches (studying group 
averages), with the recognition that the latter do not generalize to the 
former (Molenaar, 2004). Moreover, similar to what we discuss in the 
review, there is a strong emphasis on the dynamic nature of mental 
disorders and the need to build methodological tools for capturing these 
dynamics at the individual level. Another similarity to what we propose 
here is an explicit focus on clinical utility: “By focusing on treatment 

utility as the beginning rather than the end of successful diagnosis, a far 
more pragmatic and immediately applicable research agenda emerges 
rather than the ‘forever agenda’ of endlessly seeking latent disease en-
tities despite year after year of disappointment” (Hayes et al., 2022). 

Complementary to what we discussed in the review, this body of 
research has put a lot more thought into understanding longitudinal 
individual differences in a clinical context and how to study it. That 
includes aspects of intervention science (i.e., distilling and personalizing 
the active ingredients of psychotherapy), mediators of therapeutic ef-
fects, the process of change and its non-linear nature. While there exists 
some work considering how computational constructs could inform 
psychotherapy (Moutoussis et al., 2018b; Holmes and Nolte, 2019; Nair 
et al., 2020; Smith et al., 2021c; Pott and Schilbach, 2022; Lohr and 
Hauke, 2022; Connolly, 2022), there seem to be many more synergistic 
avenues to explore, particularly with regards to personalization and the 
development of methodological tools that enable it. 

10.4. The concept of validity and the focus on utility 

While in this review we have adopted a fairly mainstream view of 
construct validity (largely in line with Kane, 2013), more nuanced dis-
cussions about its theoretical foundations could be had and can be found 
in the literature (Kane, 2013; Borsboom et al., 2004; Messick, 1984; 
Cronbach and Meehl, 1955). In particular, some authors have argued 
that validity can only be established by demonstrating a causal rela-
tionship between variation in the construct and variation in its measures 
(Borsboom et al., 2004). As such, this perspective is less concerned with 
the intended use and interpretation of the measure, and more with the 
(ontological) existence of the construct (i.e., it either exists or not). 
While we agree with Borsboom et al., that causality is a stronger indi-
cator of validity (it is in line with our emphasis on longitudinal validity), 
we see value in correlational approaches too (e.g., convergent validity) 
and see no need to adopt a narrower definition of validity. We also see 
no reason to make strong ontological claims about the constructs of 
interest. In our world, all models are wrong, but some are useful. The 
more phenomena a model can explain/predict scientifically and the 
more it can be leveraged to improve patient outcomes, the better the 
model and the constructs that it relies on. The hierarchical breakdown of 
different types of validation that we present (Fig. 1) could therefore be 
seen as providing different degrees of evidence that the measure cap-
tures something meaningful and useful. 

The focus on utility is also apparent in our summary of the different 
assay uses (Fig. 4). Some might object that this leaves out more 
explanatory goals (Paulus, 2017), i.e., using the assays to build 
explanatory models of mental disorders. In fact, we consider these goals 
to be implicit in our summary. For example, computational phenotyping 
entails computational characterization of a given disorder and identifi-
cation of the most relevant treatment targets. This could provide useful 
insights to both clinicians and patients beyond any model predictions. In 
other words, for it to be useful, computational phenotyping must pro-
vide an interpretable and sufficiently intuitive explanatory model of 
one’s condition. In research, building explanatory models for explana-
tion’s sake (i.e., basic research) could be considered as an important 
intermediate stage that provides an ever deeper understanding of 
various causal dynamics underlying disorders, creating the very possi-
bility of conceptualizing new treatments and treatment targets. How-
ever, ultimately, the value of such explanatory models will depend on 
how actionable they are for improving clinical outcomes (see Weiss and 
Shanteau, 2021), for a related discussion). 

10.5. Limitations 

While in this review we focused primarily on behavioral studies, 
many of the same issues and solutions apply in the context of biomarker 
research using neuroimaging data, especially in task-based neuro-
imaging (Blair et al., 2022; Zuo et al., 2019; Milham et al., 2021; Feng 
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et al., 2022; Haines et al., 2023). However, neuroimaging introduces 
many additional challenges that would need to be addressed, including 
motion-related artifacts, physiological noise, generalizability across 
sites and scanners, cost and duration of scans, etc. (Barch and Mathalon, 
2011; Kennedy et al., 2022; Noble et al., 2019; Finn and Rosenberg, 
2021; Hu et al., 2022). Finally, we have also not considered the role of 
animal research, which has and will likely continue to play a significant 
role in the development and validation of computational models of 
cognition (Redish et al., 2022). 

11. Conclusion 

Studying individual differences is challenging, and that is just as true 
in the field of computational psychiatry. The field has been slow to 
appreciate the “mundane” aspects of the computational assay develop-
ment, namely studying their reliability and construct validity (Paulus 
et al., 2016; Browning et al., 2020). The emerging empirical data sug-
gests that poor reliability and construct validity are common. This poses 
a risk of invalidating previous findings and undermining ongoing 
research efforts focused on individual differences and assay develop-
ment. Cross-sectional single-task designs, which currently dominate the 
research landscape, are not suitable for addressing these challenges. 
Instead, the field needs to adopt study designs that assess performance 
longitudinally on a battery of tasks, and focus on investigating reliability 
and convergent validity issues. Longitudinal designs will also be needed 
to move from cross-sectional clinical validity towards clinical utility. 
Finally, to make longitudinal designs applicable in clinical practice, and 
to make research more efficient, it is important to develop the assays in a 
way that minimizes the burden placed on patients. 
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